5 . C

[62/A22]

SEAT No.

No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester IV) Examination

Date: 08-11-2017, Wednesday

Time: 10.00 To 01.00 p.m.

Subject: MATHEMATICS

Paper No. PS04EMTH29 - (Graph Theory - II)

Total Marks: 70

1. Choose the correct option for each question:

[8]

- (1) A shortest path between two vertices in a graph can be obtained using
 - (a) Kruscal algorithm
- (b) BFS algorithm
- (c) Dijkstra's algorithm
- (d) none of these
- (2) If all the digits in the Pruffer code are same, then the graph is
 - (a) Cycle graph
- (b) Path graph
- (c) Star graph
- (d) $K_{n,n}$ (n > 1)

- (3) The number of spanning trees in C_n is
 - (a) r
- (b) n!
- (c) 1
- (d) none of these
- (4) In a network, if s is source and t is sink, then
 - (a) $d^+(s) = 0 = d^-(t)$

- (b) $d^+(s) > 0$, $d^-(t) > 0$
- (c) $d^+(s) = 0$, $d^-(t) > 0$
- (d) $d^+(s) > 0$, $d^-(t) = 0$
- (5) Let A be a matrix with spectrum $\{-1, -2, 2, 3\}$. Then Trace(A) =
 - (a) 12
- (b) 12
- (c) -2
- (d) 2
- (6) Let G be a graph with $\chi(G) = 5$. Then $\lambda_{max}(G)$
 - (a) = 4
- (b) ≤ 4
- (c) ≥ 4
- (d) none of these

- (7) The Ramsey number R(3, 3) is
 - (a) 3
- (b) 6
- (c) 9
- (d) none of these
- (8) If E = {a, b, c} with $M = \{\{a\}, \{b\}, \{a,b\}\}\$ as hereditary system, then $C_M = \{a, b, c\}$
 - (a) {c}
- (b) {{c}, {b,c}}
- (c) $\{\{c\}, \{a,c\}\}$
- (d) $\{\{c\}, \{a,b,c\}\}$

2. Attempt any SEVEN:

[14]

- (a) How many trees are there with degree sequence (2,1,1,2,2)?
- (b) State Matrix-tree theorem.
- (c) If f is a flow on a network N = (V, A), then find $f(\{s\}, V)$ and $f(\{t\}, V)$.
- (d) Prove or disprove: Length of minimum weighted path from vertex u to v is d(u, v).
- (e) Prove: If G is k regular graph, then k is an eigen value of G.
- (f) Prove: $\lambda_{\max}(G) \leq \Delta(G)$.
- (g) Define u-v separating set and give one example of it.
- (h) Prove: R(p, 2) = p, if $p \ge 2$.
- (i) Prove: For $X \subset E$ and $e \in E$, $r(X + e) \le r(X) + 1$.

(PTO)

3. (a) Find $\tau(G)$ for $G = K_{2,3}$.

[6]

(b) Construct a tree with Pruffer code (12321).

[6]

OR

(b) Show that if a tree T with m edges has graceful labeling, then K_{2m+1} can be decomposed into (2m + 1) copies of T.

[6]

4. (a) Let f be a flow on a network N = (V, A) with value d. Prove that, if $A(X, \overline{X})$ is a cut in N, then $d = f(X, \overline{X}) - f(\overline{X}, X)$.

[6]

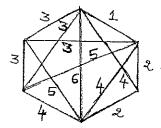
(b) Define a flow and value of a flow in a network and give one example of a flow in a network.

[6]

OR

(b) Using Kruscal's algorithm, find a shortest spanning tree for the graph below:

[6]



5. (a) Find $sp(C_4)$.

[6]

(b) Let G be a bipartite graph. Prove that if λ is an eigenvalue of G with multiplicity m, then $-\lambda$ is also an eigenvalue of G with m multiplicity.

[6]

OR

(b) Prove: The diameter of G is less than the number of distinct eigen values of G.

[6]

6. (a) Prove: $R(p, q) \ge (p-1)(q-1) + 1$.

[6]

(b) Prove (ANY ONE): In a hereditary system,

[6]

- (i) Sub modularity property $(R) \Rightarrow$ Weak elimination property (C).
- Ľ

(ii) Uniformity property (U) ⇒ Base Exchange property (B).

X-X-X-X-X