00

No. of Printed Pages: 4+6

(63)

SARDAR PATEL UNIVERSITY

M.Sc. Semester – IV (Industrial Polymer Chemistry) Examination
Thursday, 29th November 2012

PS04 (1PC01): Spectroscopy-II

Time: 10:30 am to 01:30 pm

Total Marks: 70

Note: Right hand figures indicate marks.

Q. 1	Select the correct	t answer in the	following.
------	--------------------	-----------------	------------

68

ı

1. In IR, the C-H stretching absorption of alkyne is observed at

a. ~2150 cm⁻¹

c. ~1000cm⁻¹

b. ~3300cm⁻¹

d. ~1300cm⁻¹

In UV spectra the n → o* transition is shown by

a. Ketones

c. Alcohols

b. Alkanes

d. Olefins

3. In the instrument with 1.4 Tesla magnetic field the proton will resonate at

a. 60 MHz

c. 100 MHz

b. 90 MHz

d. 300 MHz

4. In the PMR spectrum, mesitylene(1,3,5-trimethyl benzene) will give

a. 2 signals

c. 4 signalls

3 signals

d. 6 signals

Jn ¹³C NMR, phenanthrene will give

a. 14 signals

c. S signals

6 signals

d. 7 signals

The solvent CDCl₃ in ¹³C NMR spectrum will give

a. a doublet at 100 δ

c. a singlet at 180 &

a triplet at 77 δ

d. a singlet at 40 ô

7. In mass spectra, the metastable ion peak is observed

a. as diffused peak at non integral m/z value

c. as two lines with equal intensity

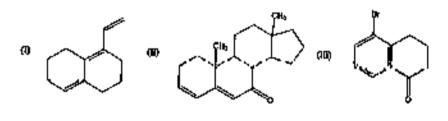
at beighest m/z value

d, at M-15 position

8. In HETCOR spectra, the connectivity observed between ¹H and ¹³C is

c.
$2J$
 and 3J d. 1J

Q. 2 Answer the following (Amy Seven).


14

- 1. Explain Fermi resonance observed in IR, spectroscopy.
- With suitable example explain the terms chromophores and auxochromes.
- 3. The symmetrical stretching vibration in H_2O is IR active whereas the same is inactive in CO_2 . Explain.
- 4. Sketch the expected PMR spectrum for ethyl acetate by taking approximate δ value for each signal.
- Assign the spin systems (Pople notations) for 1-nitropropane and p-chloro nitrobenzene.
- How will you differentiate o-, m- and p- xylenes on the basis of proton decoupled ¹³C NMR spectra.
- Write the important characteristic properties of DEPT-90 and DEPT-135 spectra.
- 8. With suitable example explain Melafferty rearrangement observed in mass spectroscopy.
- Sketch the ^tH-^tH COSY spectrum for ethyl benzene by taking approximate δ value for each signal.
- Q.3 A. Answer the following.

06

- (i) State and explain the Beer-Lambert law,
- (ii) Discuss in detail the characteristic IR absorptions in aldehydes and esters.
- B. Calculate λ_{max} for the following molecules.

06

OR

B. Answer the following.

05

- (I) How can you differentiate o-hydroxy acetophenone and p-hydroxy acetophenone on the basis of their IR spretra?
- (ii) In IR, s-trans benzal acetone absorbs at 1674 cm⁻¹ while a-cis benzal acetone absorbs at 1699 cm⁻¹, Explain.
- (iii) Draw the relative energy level diagram for the following electronic transitions. $\pi \rightarrow \pi^*$, $\sigma \rightarrow \sigma^*$, $n \rightarrow \pi^*$ and $n \rightarrow \sigma^*$

- Q. 4 A. (i) What is coupling constant in PMR? Explain vicinal and germinal couplings in detail.
 - (ii) List the important methods for the simplifications of PMR spectra. Discuss the
 use of shift reagents in detail.
 - B. (i) A compound with molecular formula C₆H₁₂O₂ shows the following signals in PMR spectrum. Assign the structure.

63

03

03

03

03

06

03

03

Signal position(8)	Multiplicity	Protons	
0.9	Doublet	6H	
t.9	Multiplet	18	
2.1	Singlet	3H	
3.85	Doublet	2 H	

(ii) What is nuclear overhauser effect? How will you distinguish following compounds using NOE-PMR spectra?

- B. (i) Sketch the expected PMR spectrum for 3-methyl-2-pentanone by taking approximate ô value for each signal.
 - (II) What is chemical shift equivalent? Dimethylformamide, in its PMR spectrum shows two separate signals for two methyl groups at room temperature but it shows only one signal for two methyl groups at 123 °C. Explain.
- Q. 5 A. Do the ¹³C NMR chemical shift calculations for the following molecules.

- B. (i) Sketch the proton coupled and proton decoupled ¹³C NMR spectra for p-methoxy benzaldehyde by taking approximate chemical shift value for each signal.
 - (ii) Indicate the position and multiplicity of the signals for the following solvents in ¹³C NMR.
 - (a) Acetone-d₆ (b) DMSO-d₆ (c) Benzene-d₆

OR

B. (i) A bicyclic hydrocarbon with molecular formula C₈H₁₄ shows only two peaks in proton decoupled ¹³C spectrum. The DBPT spectra indicated that those signals are for CH and CH₂. Assign the structure to the compound.
(ii) Sketch the ¹H-¹³C HETCOR spectrum for 2-butanol by taking approximate δ value for each signal.
Q. 6 A. Do the mass fragmentation for the following molecules.
(a) 2-methyl-2-pentanol (b) 2-pentanone (c) 3-pentanone
B. (i) Discuss FAB and MALDI techniques used in mass spectroscopy.
(ii) What is metastable ion peak in mass spectroscopy? A parent ion with mass 91, results a daughter ion of mass 65, calculate the position of the meta stable ion peak.

OR

B. A compound has molecular formula C₁₀H₁₂O₂. It gives the following spectral analysis. Interpret the spectral data and assign the structure to the compound.

Оń

IR (cm⁻¹): 1711, 3000, 2950, 1500, 1600 and 820.

PMR;			C NMR :		
8 2.1 3.6 3.8 6.9 7.1	Multiplicity Singlet Singlet Singlet Doublet Doublet	No. of protons 3H 2H 3H 2H 2H	¹³ C (6) 30.0 50.0 55.0 114.0 127.0 130.0	DEPT-90	DEPT-135 positive Negative positive positive
			207.0	_	_

Mass:

m/e: 164(M⁺), 149, 133, 121, 107, 43
