SARDAR PATEL UNIVERSITY M. Sc. FOURTH SEMESTER Examination 2017 No. of Pages: 3 [90] [A-42] SEAT No._ Saturday, 15th April 2017, Time: 2.00 p.m. to 5.00 p.m. PS04CANC02, ELECTRO ANALYTICAL METHODS N.B. Figures to the right indicate marks. Total Marks: 70 Q-1 Choose appropriate answers. (only code) [08]1. To minimize the electro stating force one of the following is added into the solution (a) Carpenter Glue (b) Fevicole (c) salt (d) Inactive electrolyte Which one of the following is a weak acid, 2. (a) HNO₃ (b)HI (c) HBr (d) HF 3. The half reaction that occurs at the anode during electrolysis of molten NaBr is (a) $2Br \longrightarrow Br_2 + 2e$ (b) $Br_2 + 2e \rightarrow 2Br$ (c) $Na^+ + e \rightarrow Na$ (d) $2H_2O + 2e \rightarrow 2OH^- + H_2$ 4. Unit of electrical conductance is (a) Volt (b) Ampere (c) Coulomb (d) Siemens If K_w is 2.9×10^{-15} at 10° C. What is the P^H of pure water at 10° C 5. (a) 6.72 (b)7.00(c) 7.27(d) 7.53 The POH of a solution of NaOH is 11.30. What is the [H⁺] for this 6. solution (a) 2.0×10^{-3} (b) 2.5×10^{-3} (c) 5.9×10^{-3} (d) 2.9×10^{-3} In a sample of pure water which one is always true at all temperature and 7. pressure? (a) $P^{H} = 7$ (b) $P^{OH} = 7$ (c) $[H3O^{+}] = 1 \times 10^{-7}$ (d) $[H3O^{+}] = [OH^{-}]$ For monobasic weak acids PH equals to 8. (a) log Ka (b) $< \log Ka$ (c) $> \log Ka$ (4) $- \log Ka$ (1) | Q-2 | Answer any seven of the following | [14] | |-----|---|-------| | 1. | Calculate equilibrium constant for the reaction: | | | | $Cu_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Cu^{+2} + 2Ag_{(s)}$ | | | 2. | (Given : ($E_{cell}^0 = 0.46 \text{ v and } E_{cell} = 0.0 \text{ v}$)
Calculate the P^H of N/100 H_2SO_4 solution and N/10 NaOH solution. | | | 3. | State relationships of electro analytical methods. | | | 4. | State sources of emf observed in glass electrode. | | | 5. | Why aqueous solutions are generally used in electro analytical methods. | | | 6. | State applications of P ^H measurements. | | | 7. | Derive $E^0 = RT / nF \ln K$. | | | 8. | How basicity of an acid is determined by conductometry measurement. | | | 9. | Write down Ilkovic equation. Explain terms involved in it. | | | Q-3 | | | | (a) | Differentiate between working and reference electrodes. Discuss | [06] | | | Quinhydrone electrodes. | | | (b) | (i) State advantages and disadvantages of antimony electrode. | root | | (0) | (1) State advantages and disadvantages of antimony electrode. | [03] | | | (ii)write a note on solid state sensors and precipitate electrodes. OR | [03] | | (b) | (i) Calculate P ^H of a solution after mixing 0.1M acetic acid with 200 ml | 1021 | | | 0.1M NaOH. ($K_a = 1.8 \times 10^{-5}$) | [03] | | | W | | | | (ii) Write down errors with glass electrodes in P ^H measurement. | [03] | | 0.4 | | | | Q-4 | Discuss First kind second kind and third hind to be a | ro 63 | | (a) | Discuss First kind, second kind and third kind of electrodes in potentiometry. | [06] | | (b) | (i)Explain chemical cell without transference. | [03] | | | (ii)Write a note on amalgam electrodes. | [03] | | | OR | | | (b) | For the cell, | | | | Pt / $Cl_{2(g)}$ (1bar) /HCl (a=1) /Ag $Cl_{(s)}$ /Ag | | | | Calculate E^0 for Ag/AgCl /Cl electrode.($E_{cell} = -1.1369V$, $E^0_{Cl/Cl} = 1.35V$ | [06] | | | (2) | | | Q-5 | |-----| |-----| - (a) Calculate the equivalent conductance of acetic acid at infinite dilution at [06] $25 \, ^{\circ}\text{C}$. (H⁺ = 349.8, Na⁺ = 50.11, Cl⁻ = 26.34 and CH3COO⁻ = 40.9) - (b) Compare between low frequency and high frequency conductance [06] techniques. ## OR (b) The equivalent conductance of 0.1 N solution of MgCl₂ is 97.1 ohm⁻¹ [06] cm²/eq. at 25 °C. A cell with electrodes that are 150 cm² in area and 0.5 cm apart filled with 010N MgCl₂. How much current will flow when the potential difference between electrodes is 5 Volt? Q-6 - (a) (i) Write down the advantages and disadvantages of dropping mercury [03] electrode. - (ii) What do you mean by Polarographic hump? How this hump can be [03] removed? - (b) Discuss current sampled and pulse polarography. ## [06] ## OR (b) How much is the transition time of Cd^{+2} increases if solution of 1 x 10⁻⁴ M [06] Cd^{+2} is added to 1.00 x 10⁻⁴ M Pb⁺² solution? *******