SARDAR PATEL UNIVERSITY [A-19]

M. Sc. (Semester -IV) Examination Saturday, 25th APRIL 2015 10.30 a.m. to 01.30 p.m.

PS04CANC02: ELECTRO ANALYTICAL METHODS

Note: Figures to the right indicate full marks. **Total Marks: 70**

Q.1 Select the correct answer:

- The emf of the cell Tl / Tl⁺ (0.001M) // Cu⁺² (0.01M) /Cu is 0.83 V.The cell emf can [1] (c) Increasing concentration of Tl^+ (b) Increasing concentration of Cu^{+2} (c) None be increased by
- If a salt bridge is removed from the two half cells, the voltage [2] (a) Drops to zero (b)Does not change (d) Increases Rapidly (c) Increases slowly
- The number of coulombs required for the deposition of 107.80 gms of silver is [3] (a) 96500 (b) 10,000 (d) 93000 (c) 48250
- [4] A current of 2.6 ampere was passed through CuSO₄ solution for 380 second .The copper deposited is (Cu = 63.5)

(a) 0.3250	(b) 0.635
(c) 6.35	(d) 3.175

- What is the P^H of a solution having H+ ion concentration of 3.3×10^{-11} [5] (b) 8.5 (a) 10.48 (c) 8.4815 (d) 6.4
- When P^{H} of a solution decreases, its H^{+} ion concentration [6] (b) Increases (a) Decreases (c) Remains constant (d) Increases rapidly
- The two Pt electrodes filled in the conductance cell are 1.5 cm apart, having cross [7] sectional area of each electrode is 0.75cm². The cell constant value is
 - (b) 0.5 cm^{-1} (a) 1.25 cm⁻¹ (c) 2.0 cm $^{-1}$ (d) 0.2 cm^{-1}
- For the following amperometric curve [8]

2

(a) sample is active and reagent is inactive

- (b) sample and reagent is both
- (c) sample and reagent both inactive
- (d) sample is inactive and reagent is active

No. of printed pages: 3

(08)

Answer any seven of the following: 0.2

Q. 3

For the cell, $Mg_{(s)} + 2Ag^+ (0.0001M) \rightarrow Mg^{2+} (0.13M) + 2Ag_{(s)}$. (a)

Calculate E_{cell} if $E^{0}_{cell} = 3.17 v$.

- State Faraday's laws of electrolysis. (b)
- Differentiate between Galvanic and electrolytic cell. (C)
- State forces apply on electrode surface during electrolysis in polarography. How these (d) forces can be minimize?
- Using $\Delta E = q + w$, Obtain $\Delta G = W_{electrical}$ (e)
- A solution of $P^{H} = 9$ is one thousand times as basic as solution. Calculate the P^{H} of **(f)** the solution.
- Obtain $P^{H} = -\log Ka$ for monobasic weak acid. (g)
- A solution containing 0.25 gms of Cu⁺² requires 20 minutes for complete deposition (h) Of Copper at 1.25 A. Calculate coulomb requires for the deposition. (Cu = 63.54.F = 96500)
- Calculate equilibrium constant for the reaction : $Cu_{(s)} + 2Ag^+_{(aq)} \rightarrow Cu^{2+} + 2Ag_{(s)}$ **(i)** (Given : $E_{cell}^0 = 0.46$ v, where $E_{cell} = 0$)

Calculate P^H during the titration of 50 ml of 0.05 M HCl with 0.1 M NaOH at (b) (06) different addition of NaOH solution. i.e. 0.0 ml, 10 ml, 25 ml, and 25.5 ml.

OR

- (b) Discuss hydrogen electrode and antimony electrode.
- Outline electrochemical cell. Discuss electrolytic concentration cell without and with Q.4 **(a)** (06) liquid junction potential.(Reversible to Cation and Reversible to anion)
 - Obtain the relations: (i) $\Delta H = nF [T(\partial E/\partial T)_P E]$ (ii) $E^0 = RT/nF \ln K$ and **(b)** (06)

(iii)
$$\log K_{sp} = E_{cell}^0 / 0.0591$$

For a cell Zn / ZnCl_{2 (aq)} / AgCl_(s) / Ag, the emf is 1.02V at 0° C and 1.0196 V at 1° C. **(b)** (06) Write down cell reaction and calculate ΔG , ΔS and ΔH for the reaction.(F = 98485)

OR

(06)

Q.5	(a)	Write down mathematical form of Kohlarausch's law of independent migration of	(06)
		Ions. Discuss its applications.	
	(b)	State advantages and disadvantages of high frequency conductance method.	(06)
	(b)	OR (i) A 0.180 grams of organic acid was titrated coulometrically with OH^{-} ions	(06)
		Produced in 5 minutes by constant current of 0.514 ampere. Calculate the	
		mass of the acid ($n = 1$, and $F = 96500$)	
		(ii) Calculate equivalent conductance of acetic acid at infinite dilution if ionic	
		conductance's at 25° C for HCl = 349.8, NaCl = 126.4, and NaAc= 91.00	
Q.6	(a)	The diffusion current of Pb ⁺² in an unknown solution is 5.6 μ A. 1 ml of 1.0 × 10 ⁻³ M	(06)
		Pb^{+2} solution is added to 10 ml of unknown solution and the diffusion current of the	
		Pb^{+2} is increased to 12.0 μA	
		What is the concentration of Pb^{+2} in the unknown solution.	
	(b)	P- Phylene diamine, present in 0.488 mM concentration and having an applied	(06)
		current of 29.0 μ A,had transition time of 76.8 second. What is the electron change	
		Involved if the electrode had surface area of 1.72 cm ² and D = 0.92×10^{-5}	
		(F = 96500 and π = 3.14) OR	
	(b)	(i)Discuss current sample and cyclic voltametry.	(03)

L

L

(03)

· · · -

(ii) State applications of amperometry.

◎●☆●◎