	[27/A-19]	SEAT No		o of printed pages: 2	
		Sardar Patel Un M.Sc. Semester III E day, 21 st April 2017; Code: PS03EMTH	niversity xamination 14:00 to 17:00		
* T .	3.		Max	ximum Marks: 70	
	Notations are standard			1	[o]
	I To answer, write the correct question number and option number only. [8] For an element a of a group G , $a^{m+n} = $				
(4)	(i) a^{mn} (ii) $(a^m)^n$			other three	
<i>(b</i>)	The inverse of the perr			,	
(0)				(iv) (2 1 3)	
(c)	(i) (1 2 3) (ii) (2 3 1) (iii) $(1 \frac{1}{2} \frac{1}{3})$ (iv) (2 1 3) (c) For a finite abelian subgroups H, K of a group $G, o(HK)o(H \cap K) = $				
(0)					
(d)	(i) $o(H)o(K)$ (ii) $o(H)/o(K)$ (iii) $o(H) + o(K)$ (iv) $o(HK)$ d) In S_3 the number of elements in the conjugacy class $C(2\ 3)$ is				
()	(i) 1	(ii) 2	(iii) 3	(iv) 6	
(e)	Total number of conjugation		` '	~	
(,/	(i) 2		(iii) 4	(iv) 5	
(<i>f</i>)	A group of order	is simple.	•		
,	(i) 3		(iii) 6	(iv) 8	
(g)	A group of order	_ is abelian.			
	(i) 6		(iii) 16	(iv) 25	
(h)	(h) There are nonisomorphic finite abelian groups of order 16.				
	(i) 1 (ii) 3	(iii) 5 (iv) 7			
Q.2 Attempt any Seven. (Start a new page.)					[14]
(a) Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, where $a, b, c, d \in \mathbb{Z}$. Show that $ad - bc = \pm 1$.					
(b) Let G be a group. Show that every $g \in G$ has a unique inverse in G .					
(c)	(c) Let G be a group of order 18. Show that there is $a \in G \setminus \{e\}$ such that $a^4 = e$.				
(d)	(d) Let G be a finite group and $a \in G$. Show that $o(a) \mid o(G)$.				
` ,	(e) Prove that the relation of conjugacy is a transitive relation on a group.				
\" /	(f) Give one reason to conclude that a group of order 9 is abelian. (g) Let A, B be subgroups of a group G . For $x, y \in G$ define $x \sim y$ if there exist				
(-)	$a \in A, b \in B$ such that $y = axb$. Show that \sim is transitive.				
(h)	(h) Let G be an abelian group and \widehat{G} be the set of all homomorphisms from G to the				
	group of all nonzero complex numbers. Show that \widehat{G} is abelian.				
(i)	(i) For $n \in \mathbb{N}$ define $\varphi: S_n \to \mathbb{Z}_2$ by $\varphi(\theta) = \begin{cases} 0 & \text{if } \theta \text{ is even} \\ 1 & \text{if } \theta \text{ is odd.} \end{cases}$ Show that φ is a homo-				
	morphism.				
	mor britain.				

[Contd...]

á

PS03EMTH08:Group Theory Q.3 (Start a new page.) (a) Define a group and show that the set S_3 of all permutations on three symbols is a nonabelian group. (b) Let H, K be two subgroups of a group G. Show that HK is a subgroup of G if and only if HK = KH. OR [6] (b) State and prove Cayley's Theorem Q.4 (Start a new page.) (c) Define automorphism of a group. If G is a group, then prove that the set of all [6] automorphisms of G is also a group. (d) Let G be a finite group and $a \in G$. In usual notations, prove that $c_a = o(G)/o(N(a))$. [6] OR(d) If G is a group with $o(G) = p^n$ for some prime p and $n \in \mathbb{N}$, then show that $Z(G) \neq \{e\}.$ Q.5 (Start a new page.) (e) Let G be a finite group and $p \in \mathbb{N}$ be prime such that $p^n \mid o(G)$. Show that G has a [6] subgroup of order p^n . (f) Let $p \in \mathbb{N}$ be prime. Let $n(k) \in \mathbb{N}$ be such that $p^{n(k)} \mid (p^k)!$ but $p^{n(k)+1} \nmid (p^k)!$. Show that $n(k) = 1 + p + p^2 + \dots + p^{k-1}$. (f) Define solvable group. Show that S_5 is not solvable. [6] Q.6 (Start a new page.) (g) Define internal direct product. Let G be an internal direct product of its subgroups N_1, N_2, \ldots, N_k and let $1 \leq i < j \leq k$. Show that $N_i \cap N_j = \{e\}$. Also for $a \in N_i$, $b \in N_i$, show that ab = ba. (h) For to isomorphic abelian groups G and G', and $s \in \mathbb{N}$, show that G(s) is isomorphic |6|to G'(s), where $G(s) = \{x \in G : x^s = e\}$. OR

(h) Let $p \in \mathbb{N}$ be a prime. Prove that the number of nonisomorphic abelian groups of [6] order p^n is equal to the number of partitions of n.

 $\mathbf{H}^{\dagger}\mathbf{H}^{\dagger}\mathbf{H}^{\dagger}\mathbf{H}^{\dagger}\mathbf{H}$