(85 & A-95)	Seat No!	
-------------	----------	--

No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester III

Wednesday, 19 October 2016

2.00 p.m. to 5.00 p.m.

	1	PS03CMTH02 - Mathe	ematical Methods I		
			-	Maximum Marks: 70	
	Choose the correct op Let $f(x) = \cos x + i \operatorname{si}$			$_{-1}$ of f is	[8]
	(a) 1	(b) <i>i</i>	(c) -i	(d) 0	
(2)	Let f be a 2π - periodic f at π converges to	ic function given by $f($	$(x) = x - x^2, -\pi < x$	$\leq \pi$. The Fourier series of	
	(a) $-\pi^2$	(b) π^2	(c) -π	(d) π	
(3)	If $f \in L^1(\mathbb{R})$ and $F[f]$	$](s) = \frac{\sin 4s}{3s}, \ s \neq 0, \ \text{the}$	en $F[f](0)$ is equal to		
	(a) $\frac{4}{3}$	(b) $\frac{3}{4}$	(c) 1	(d) 0	
(4)	Let f be an even integrated from the second contract f because f is a second contract f because f is a second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f in the second contract f is a second contract f in the second contract f is a second contract f in the second contract f in the second contract f is a second contract f in the second contract f in the second contract f is a second contract f in	grable function. Whic	h of the following is n	ot true?	•
	(a) $F[f] = F^{-1}[f]$	(b) $F_c[f] = F[f]$	(c) $F[f] = -iF_s[f]$	(d) $F[F[f]] = F[f]$	
(5)	$L[e^{at}\sinh bt](t) =$				
	(a) $\frac{a}{(s-a)^2+b^2}$	(b) $\frac{b}{(s-a)^2+b^2}$	(c) $\frac{a}{(s-a)^2-b^2}$	(d) $\frac{b}{(s-a)^2-b^2}$	
(6)	$L^{-1}\left[rac{L[f](s)}{s} ight](t)=$				
	(a) $\int_t^\infty L[f](u)du$	(b) $\int_0^t L[f](u)du$	(c) $\int_{t}^{\infty} f(u)du$	(d) $\int_0^t f(u)du$	
(7)	The Z - transform of	$(\frac{1}{n!})_{n\geq 0}$ is			
	(a) e^z	(b) e^{-z}	(c) $e^{\frac{1}{z}}$	(d) $e^{-\frac{1}{z}}$	
(8)	The value of $\frac{d^{11}}{dx^{11}} \{e^{x^2}\}$	$\frac{d^7}{dx^7}(e^{-x^2})$] at $x = 0$ is	`		
	(a) 7	(b) 11	(c) $\frac{7}{11}$	(d) none of these	
(a) (b)	Attempt any Seven. Compute the half rar Express the complex coefficients a_n and b_n	Fourier coefficient c_n o	f a 2π - periodic functi	$<\pi.$ on f in terms of its Fourier	[14]

(c) Evaluate $\int_0^\infty \frac{\sin^2 x}{x^2} dx$ using Fourier transform methods. (d) Let u(x,t) be a function of two variables such that both u(x,t) and $u_x(x,t)$ tend to 0 as $x \to \infty$. In usual notations show that $F_s[u_{xx}](s) = -s^2 F_s[u](s) + \sqrt{\frac{2}{\pi}} su(0,t)$.

(PTO)

- (e) Evaluate the Laplace transform of t^2e^{-4t} .
- (f) Find the inverse Laplace transform of $\frac{e^{-\pi \delta}}{s^2+1}$
- (g) Compute $H_3(1)$.
- (h) Compute the inverse Z- transform of $\frac{z}{(z-2)(z-3)}$
- (i) State Gram-Schmidt Orthonormalization Theorem.

Q.3

- (a) Compute the Fourier series of 2- periodic function $f(x) = x x^2$, $-1 < x \le 1$. Hence evaluate the sums of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^4}$
- (b) Compute the half range Fourier cosine series of the function $f(x) = \frac{2x}{\pi}$ if $0 < x < \frac{\pi}{2}$ and $f(x) = \frac{2}{\pi}(\pi x)$ if $\frac{\pi}{2} \le x < \pi$. Hence evaluate $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$.

(b) Solve $u_t = c^2 u_{xx}$, 0 < x < 100, t > 0 subject to u(0,t) = u(100,t) = 0, $t \ge 0$, u(x,0) = xfor $0 \le x \le 50$ and u(x,0) = 100 - x for $50 \le x \le 100$. (you may take both functions equal to $-k^2$ while applying separation of variables)

Q.4

- (c) Solve $u_{tt} = c^2 u_{xx}$, x, t > 0 subject to u(x, 0) = f(x), $u_t(x, 0) = g(x)$ for all x > 0 and u(0,t) = 0 for all t > 0 using Fourier transform methods.
- (d) Compute the Fourier transform of $\chi_{[-1,1]}$. Hence evaluate the integrals $\int_0^\infty \frac{\sin x \cos 2x}{x} dx$ and

- (d) (a) If $f, g \in L^1(\mathbb{R})$, then show that $f \star g \in L^1(\mathbb{R})$.
 - (b) Let $\alpha > 0$ and $\alpha \neq 1$. Solve $y'' y = e^{-\alpha |x|}$ subject to $y(x) \to 0$, $y'(x) \to 0$ as $|x| \to \infty$.

[3]

[6]

- (e) Use Laplace transform methods to solve $u_{tt} = c^2 u_{xx}$, x > 0, t > 0 subject to u(0,t) = $A \sin wt$, $u_x(0,t) = 0$ for all t and $u(x,0) = u_t(x,0) = 0$ for all x.
- (f) Compute the inverse Laplace transforms of the function $\frac{s}{s^4+s^2+1}$ and $\frac{e^{-3s}}{(s-1)^2+2}$ [6]

(f) Solve $y'' + 2y' + 5y = e^t \sin t$ subject to y(0) = 3 and y'(0) = 1.

(g) Orthonormalize the set $\{1, x, x^2\}$ over [-1, 1] and show that

 $\operatorname{sp}\{1, x, x^2, \ldots\} = \operatorname{sp}\left\{\sqrt{\frac{2n+1}{2}}P_n(x) : n \in \mathbb{N} \cup \{0\}\right\}.$

- (h) (a) Solve $y_{n+2} 6y_{n+1} + 5y_n = 0$, $n \ge 0$, subject to $y_0 = 1$ and $y_1 = -2$.
 - (b) Find the Green's function for y''(x) + 9y(x) = f(x) subject to y(0) = 0, $y'(\pi) = 0$ and hence find the solution of the above equation where $f(x) = x \cos x$.

- (h) (a) Find a polynomial of degree 2 so that $\int_{0}^{1} |\sin x p(x)|^{2} dx$ is minimum. [3]
 - (b) Show that $H_{n+1}(x) 2xH_n(x) + 2nH_{n-1}(x) = 0$ for all $n \geq 1$ and hence show that $H_n(x)$ satisfies y'' - 2xy' + 2ny = 0.

