[130]

No. of Printed Pages: 02

SARDAR PATEL UNIVERSITY

M. Sc. THIRD SEMESTER INDISTRIAL BIOTECHNOLOGY EXAMINATION

TUESDAY, DATE: 04-12-2012

PS03CIBT03 ENZYMOLOGY

TIME: 2:30 to 5:30 pm

MAX. MARKS: 70

Q-1 Select (tick'v') the correct answer from the following

[08]

- 1. The term Kcat/Km is
 - a. Efficiency constant
 - b. Proficiency constant
 - c. Specificity constant
 - d. All of the above
- In a substrate saturation curve in presence of a reversible enzyme inhibitor, if the x and y intercepts change, but the slope remains constant with the increase in inhibitor constant in LB plot, the type of inhibition is
 - a. Competitive
 - b. Non competitive
 - c. Uncompetitive
 - d. Mixed
- 3. Which of the following is false for MM kinetics?
 - A. Km = 1/2 Vmax
 - B. Vo= K2 [E0]
 - C. V_{max} = K₂ [ES]
 - D. Km = [E] [S]/[ES]
 - a. Only A is false
 - b. B and C are false
 - c. A B C are false
 - d. All are true
- 4. EC 1.1.1.1 represents
 - a. Alcohol dehydrogenase
 - b. Invertase
 - c. Chymotrypsin
 - d. Lysozyme
 - 5. Chymotrypsin is an example of
 - a. Electrostatic catalysis
 - b. Covalent catalysis
 - c. Sigmoidal kinetics
 - d. None
 - 6. Fold purification is
 - a. Test of homogeneity
 - b. Number of times the enzyme concentration increases
 - c. Number of times the unit activity increases
 - d. Number of times specific activity increases

7. Protein engineering is predetermined alterations in protein by

	a. Addition or deletion of one				dala				
	b. Addition or deletion of mor		one ar	nino a	cias				
	c. Deletion of protein domain								
	d. All of the above								
8.	Ribozymes are								
	a. Isozymes								
	b. Oligomeric proteins								
	c. RNA catalysts								
	d. Catalytic antibodies								
Q-2 At	empt: (Any Seven)							[14]	
	a. Define turnover number								
	b. Explain principle of affinity	chrom	atograp	phy		14			
	c. What is ping-pong mechan					125			
	d. What is covalent catalysis?								
	e. Write the Michaelis Mento	n assur	mption.			-1			
	f. Draw Cornish-Bowden Eise	nthal p	lot			. 66			
	g. Draw Arrhenius plot								
	h. Describe the hemoglobin st	tructur	e						
	i. Write the Adair equation fo	or a tet	rameri	enzyı	ne.				
Q. 3	a) Derive an equation for Mixed Inhibition							(06)	
						100000	5000	24.41	
	 Explain with the help of equation, the Dixon plot for Competitive inhibition OR 							(06)	
	b) Explain how we differentiate between binary and ternary complex mechanisms							nisms in a	a
	two substrate reaction							(06)	
Q. 4	a) Explain with suitable exampl	es how	we stu	ıdy en	zyme i	nechanisms.		(06)	Rid
	at-								
	b) Explain the active site structure of chymotrypsin							(06)	
	OR								
	b) Explain the oligomeric structure of ATCase							(06)	
Q. 5	a) Write a note on: MWC and KNF models							(06)	
0.5325(0)									
	b) "Allosteric enzymes follow sigmoidal kinetics", explain giving example							(06)	
	OR							(06)	
	b) "ATCase follows MWC mod	iei , ju:	sury					(00)	
Q. 6	a) Analyze the given substrate	satura	tion da	ta for	Invert	ase reaction b	y suital	ole plot to	0
α. σ	determine Km, Vmax and Kcat.								
		2.03	6.67	10	20	40			
	[S] mmol/ L	5.0	6.67	10	20				
	Velocity µmoles/L/min		182	233	323	400		.greeney-	
	Given: [E] = 0.05 mg/ml, Mol wt 55 kd.							(06)	
	b) Explain Protein engineering giving suitable examples							(06)	
	OR								
	b) "Hemoglobin is an excellent Oxygen carrier", Justify							(06)	