Total Marks: 70

(62)

SARDAR PATEL UNIVERSITY

M.Sc. Renewable Energy Examination (Semester -II)

Thursday, 07-04-2016, Time: 10.30 to 0.1.30P.M

PS02CREN02: Ocean Energy and Tidal Energy

Q-1 Select most appropriate answer		(8x1 = 8)
1.Ocean thermal energy plants can operate if the	e temperature di	fference between the water at
the surface and water at depths up to	km is	or more
a) 2km and 293K	c) 5km :	and 20°C
b) 10km and 293k	d) 10km	and 20°C
2. The temperature difference between the upper	er layers and the	deeper layers of the ocean
should be to install an OTEC power pla		
a) 40°C	c) 20°C	
b) 50°C	d) 30°C	
3. Floating generators are used in the sea to har	ness	
a) tidal energy	c) hydel	energy
b) wave energy	d) energ	y from OTEC power plant
4. A high tide occurs		
a) on every new moon day	c) both	on new moon and full moon
b) on every full moon day	day	
•	d) any t	ime
5. Ocean thermal energy is due to		
a) Energy stored by waves in the	,	sure difference at different
ocean	level	s in the ocean
b) Temperature difference at different	d) Tides	s arising out in the ocean
levels in the ocean		
6. The total energy per unit width per unit leng	th of a gravity w	ave in deep water over a
complete wavelength is given by	_	
a) $\frac{1}{2}\rho g \lambda^2$ b) $\frac{1}{2}\rho g a^2$	 c) ρga d) ½ρg 	_
a) 1.000 ²	$\frac{1}{4}\rho g$	a^2
b) \(\frac{1}{2}\rho \text{g}u\)		
7. The power per metre width in a typical ocean	wave is of orde	:Y 537 1
a) 1 kW m-1	c) 50 k	
b) 10 kW m-1	d) 100 l	kw m-1
8. The interval between high tides is about	. 101	
a) 6 hours.	c) 12 h	
b) 9.5 hours.	d) 12.5	nours

- 1. What is ocean energy?
- 2. Define the principle of OTEC plant, ocean surface & deep water temperature
- 3. What is the maximum power that may be produced from an OTEC cycle when the upper & lower layer temperature is 34°C and 6°C respectively. The cycle receives 180 kW of heat. How much heat is rejected from the cycle?
- 4. Enlist the main deciding criteria for location of ocean wave plants.
- 5. Calculate the wave length and wave velocity for the progressive ocean wave with period 6 second.
- 6. List out the limitation of ocean wave energy conversion technology.
- 7. What is point absorber wave machine?
- 8. What is tidal current?
- 9. The basin area of tidal power plant is $20 \times 106 \text{ m}^2$. The tidal range is 8m, calculate the energy generated in Kwh.
- Q-3 A) State various forms of ocean energy source and its merits and demerits (06)
- Q-3 B) Describe the off-shore and on-shore ocean energy conversion technologies

 OR

 (06)
- Q-3 B) Describe in detailed about power transmission technology from off-shore ocean to land based centers.
- Q-4 A) Explain construction and working principle of open cycle OTEC system with neat (06)
- Q-4 B) Drive an expression for Carnot efficiency of an OTEC plant with the help of T-S (06)
- Q-4 B) Describe closed cycle OTEC system and state why closed cycle OTEC is preferred?
- Q-5 A) Drive an expression for energy and power in ocean waves. (06)
- Q-5 B) Calculate wave energy and power. Ocean waves on the coast of Tamilnadu, India were with following data. Amplitude 1 m, Period 6s. Calculate the following: wavelength, velocity, energy density, power extracted from a wave of 10 m with a power density, energy in 100 m wide wave. Assume density of ocean water as 1000 kg/m³ (06)
- Q-5 B) Give the classification of wave power extraction methods based on operating principle and structure with neat diagram
- Q-6 A) Explain the various methods of tidal power generation with neat sketch diagram.

 Enlist the limitations of each method?

 (06)
- Q-6 B) A tidal power plant of single basin type has a basin area of 25 x 10⁶ m². The tide has a range of 10 m. The turbine however, stops operating when the head on it falls below 2 m. Calculate the energy generated in one filling process, in kWh if the turbine generator efficiency is 75 %. Take density of sea water is 1025 kg/m³.

OR

Q-6 B) State the present status of tidal power plants in India and around the world. Why the tidal energy not being utilized fully? (06)

X=x=x