SARDAR PATEL UNIVERSITY M.Sc. (Renewable Energy) Examination, Second Semester Day and Date: Friday, 24.04.2015 Session: Morning, Time: 10:30 to 13:30 Subject/ Course Code: PS02CREN03 / Paper No. 3 Subject/ Course Title: Hydro Energy and Chemical Energy Sources | Choose the correct answer (i) The power equation for the hydro electric power station is given by | | | | | | | | | |--|---|---|-----------------|-------------------------------|--|---|----------------------------|--| | | a. P | ′= 9.81 QHη | | b. | P= | 31 / QHη | | | | | a. P= 9.81 QHη b. c. P= QHη / 9.81 d. | | ~ P≠ | -P= 9.83 QH/η | | | | | | (ii) | ******** | Turt | bine is | suital | ble fo | ow head hydro power plants | | | | | a. | | e | | b. | xial Flow Turbine | | | | | c. | Tube Turbine | | | d. | ulb Turbine | | | | (iii) | Alkaline l | Fuel Cell (AFCs) ι | ıses | | | . as an electrolyte | | | | | a. | NaCl | b. | KOF | ŀ | | | | | | c. | H ₂ SO ₄ | d. | H ₃ PC | O_4 | | | | | (iv) | Maximun | efficiency of Hyd | drogen | Oxy | gen fi | cell is | | | | ` ′ | a. | 63 % | h | 93 % | | | | | | | _ | | | | | | | | | (v) | - | ess of splitting wa | ater in | 83 %
to hy | | and oxygen by means of c | lirect electric current is | | | (v) | The proce | ess of splitting wa | ater in | to hy | droge
Hyd | ysis | lirect electric current is | | | (v) | The proce | ess of splitting wa | ater in | to hy | droge
Hyd | ysis | lirect electric current is | | | | The proce
known as
a.
c. | Photolysis Photosynthesis | ater in | to hy b. d. of the | droge
Hyd
Elec
Solid | ysis
lysis
kide Fuel Cell is | | | | | The proce
known as
a.
c. | Photolysis Photosynthesis ting temperature r 70-100 °C | ater in | b. d. f the b. | droge
Hyd
Elec
Solid
50-1 | ysis
olysis
kide Fuel Cell is
°C | | | | | The proce
known as
a.
c. | Photolysis Photosynthesis | ater in | b. d. f the b. | droge
Hyd
Elec
Solid | ysis
olysis
kide Fuel Cell is
°C | | | | (vi) | The proce known as a. c. The opera a. c. | Photolysis Photosynthesis ting temperature r 70-100 °C 800-1000 °C | ater in | b. d. f the b. d. wable | Hyd
Elec
Solid
50-1
160- | ysis volysis volde Fuel Cell is | ······ | | | (vi) | The proce known as a. c. The opera a. c. | Photolysis Photosynthesis ting temperature r 70-100 °C 800-1000 °C | ater in | b. d. of the b. d. wable b. | Hyd
Elec
Solid
50-1
160-
Ener
Up | ysis vlysis vide Fuel Cell is °C 0°C micro hydro power station | ······ | | | (vi) | The proce known as a. c. The opera a. c. As per Mi | Photolysis Photosynthesis ting temperature r 70-100 °C 800-1000 °C | ater in | b. d. f the b. d. wable | Hyd
Elec
Solid
50-1
160-
Ener
Up | ysis volysis volde Fuel Cell is | ······ | | | (vi)
(vii) | The proce known as a. c. The opera a. c. As per Mi a. c. The comb | Photolysis Photosynthesis ting temperature r 70-100 °C 800-1000 °C mistry of New and 101-1000 kW 1-25 MW | ater in range o | b. d. f the b. d. wable b. d. | Hyd
Elec
Solid
50-1
160-
Ener
Up
No | ysis olysis kide Fuel Cell is °C 0 °C micro hydro power station 100 kW of the above tems installed at a single | has the capacity of | | | (vi)
(vii) | The proce known as a. c. The opera a. c. As per Mi a. c. The comb | Photolysis Photosynthesis ting temperature r 70-100 °C 800-1000 °C inistry of New and 101-1000 kW 1-25 MW | ater in range o | b. d. f the b. d. wable b. d. | Hyd
Elec
Solid
50-1
160-
Ener
Up
No | ysis olysis kide Fuel Cell is °C 0 °C micro hydro power station 100 kW of the above tems installed at a single | has the capacity of | | | Q-2 | swer any seven short questions | (14) | |-----|---|------| | | a. Give the classification of water turbines b. Explain tube turbine with suitable diagram c. It is required to develop 15000 kW at 214 RPM under head of 100 m with single runner. What type of turbine should be installed? d. Explain principle operation of acidic fuel cell with suitable figure e. Give different type of fuel cell with their characteristics f. Give possible areas of hydrogen use g. Explain Solar wind hybrid system in brief h. Explain mycrohydel PV in brief ii. Describe in brief solar energy method for H₂ production | | | Q-3 | A. Explain working of Francis water turbine with suitable diagrams | (6) | | | B. Explain major components of small hydropower project | (6) | | | OR Explain with suitable diagram | (6) | | Q-4 | A. Explain Alkaline Fuel Cell (AFCs) with suitable diagram | (6) | | | B. Give advantages of fuel cell power plant OR | (6) | | | Derive expression for output, efficiency and EMF of fuel cell | (6) | | Q-5 | A. Explain Biogas -solar thermal hybrid system with case study | (6) | | | B. PV hybrid with Diesel Generator OR | (6) | | | Explain the need of hybrid system and give type of hybrid system | (6) | | Q-6 | A. Explain Westinghouse electrochemical thermal sulfur cycle with suitable diagram | (6) | | | B. What is electrolysis? Describe electrolytic production of hydrogen with suitable diagram OR | (6) | | | What are the different methods for hydrogen storage? | (6) | -×---