No of Printed pages: 03

٠

SARDAR PATEL UNIVERSITY

M.Sc. (I Semester) Examination

2012

Thursday, 29th November

10:30 a.m. to 1:30 p.m.

STATISTICS COURSE No. PS01 STA01

(Probability Theory)

Note: Figures to the right indicate full marks of the questions. (Total Marks: 70)

1	Attempt all, write correct answers		08
ወ	For an infinte interval, measure sho measure and the measure a) L-S, Lebesgue, Counting, ∞ b) L-S Measure, Lebesgue, Counting, ∞ c) Lebesgue, L-S, Counting, ∞ d) Lebesgue, Counting, L-S, difference	ng, 0	
(ii)	Lim [I(An) dP over Borel set B isfor a) P(A), MCT b) P(A∩B), DCT c) P(A∩B), MCT d) P(A∩B), Fatous' theorem	llerving	
(iii)	Lebesgue measure is a particular case of L. a) F(x) = x-2, x in R b) F(x) = x, x in R+ c) F(x) = x, x in N d) None of the above	-S measure for choice of Function	
(tv)			
(v)	The field containing {1,2, 100} has a) 1 b) cardinality of power set c) 100 d) 2 raise to 100	elements	
(vi)	The sufficient condition for a sequence of it zero odd moments to hold strong law of lar	ndependent random variables having ge number is	
	a) Variance is finitec) Third moment is finite	b) Mean is zerod) Fourth moment is finitee)	
(ilv)	The $\langle X_a \rangle$ converges in probability to X Ω	en this imply	
	n) $< X_n > converges in r^n$ mean c) $< X_n > converges in distribution$	b) < X_n > converges a.s.d) None of these	

ļ

(viii) The sequence of standardized sum of iid Bernouli rendom variables converges to a a) Binomial r.v. b) Normal r.v. c) Degenerate r.v. d) Poisson r.v. Attempt ANY 7, each carries 2 marks 2 14 Prove that: If $A_n \to A$ then $A_n^{\ c} \to A^c$. (B) Answer, what is $\lambda(0, 1/n)$ = and $\lambda(N)$ = and why? (b) Show that indicator function of set A is measurable if and only if A is a (e) measurable set. Prove in usual notations that $\int_{\Omega} s + t d\mu = \int_{\Omega} s d\mu + \int_{\Omega} t d\mu$ **(d)** (**e**) Using Jenson's inequality prove that $\mathcal{E}^{(1)}|X|^p \ll \mathbb{E}^{(1)}|X|^p$ for 0 < < 5, State and prove Borel-Cantelli lemma, **(f)** Let X_n be a sequence of random variables defined by $P(X_n=0)=1\cdot 1/n^{\tau}$ and $P(X_n = n) = 1/n^r > 0$, $n \ge 1$. Verify that $X_n \to 0$ in probability but not in rth mean. (h) Show that $F(x) = |x|^2$ $\begin{vmatrix} x/2 & 0 \le x \le 1 \\ 1-x+x^2/2 & 1 \le x \le 2 \end{vmatrix}$ is continuous distribution function. Let $\{X_n\}$ be sequence of independent random variables with common uniform distribution over (0, 1). For $A_n = (X \le 1/n)$, find the probability $P(\limsup A_n)$. If X₁, X₂ ..., X_n are fid bernoull random variables find the characteristic function Define semi-field, field and sigma field giving example considering $\Omega = \{0,1\}$. What are the interrelationships among these classes? 06 Define counting measure, Lebesgue measure and Lebesgue-Steiltjes measure. 06 Show that each measure function is sigme finite and can be extended to a probability measure. ÓR Show that probability measure is continuous. Define Borel measurable function. Show that if f is non-negative measurable function then $f^2 + \alpha$ is also non-negative measurable, α is a real constant. Show that increasing sequence of non-negative simple functions converges to a non-negative measurable function. State and prove monotone convergence theorem. Prove that, if y=g(x) is differentiable for all x, and either g'(x) > 0 or < 0 for all x > 0and if X is continuous then Y=g(X) is continuous. Also obtain the density function of Y. If the pdf of random variable X is $f(x) = \alpha f(x)^{\beta/2} \exp(-\alpha x^{\beta})$ for x>0 and 0 5(1

	otherwise, then find pdf of $y = x^{\beta}$.	exp(-axr) for x≥0 and 0		
b)	State and prove Basic inequality,			
	. 2			

- OR

 5(b) If X is a random variable taking values -t, 0, t with probabilities p, 1-2p, p respectively, show that Markov's inequality attains equality.
- Show that characteristic function is uniformly continuous and differentiable twice 06 if first and second moments are finite.
- 6(b) State and prove Kintchin's weak law of large numbers. Using this what can you say about the sequence $\langle X_n \rangle$ having pmf $P(X_n = n) = \frac{1}{2n} = P(X_n = -n)$ and $P(X_n = 0) = 1 - \frac{1}{n}$. Does this sequence hold Weak law any way?

OR

State and prove Lindberg-Levy central limit theorem (CLT). State one application

3