	·			
(A-2)				
Seat No			No of printed pages: 2	
		atel University		
	M.Sc. Seme	ester I Examination 2016		
	Frida		•	
	10.	y, 21 October 00 to 13.00 PM		
		cs: PS01CMTH07 Copology I).		
	(1	opology 1).	Maximum Marks: 70	
0 4 777 11 11	and correct on	tion number only f		[8]
Q.1 Write the question $(a) \ \{(a,b): a,b \in \mathbb{Z}, a\}$	n number and correct op $a < b$ is			Lj
(i) a base for a top (ii) a base for a top		(iii) an open cover ((iv) family of disjoint		
(b) All topologies on	are compact.			
(i) a finite set	(ii) an infinite set	(iii) Q	(iv) ℕ	
(c) A compact metric	c space must be			
(i) countable	(ii) finite	(iii) complete	(iv) infinite	
(d) \mathbb{R} with top	ology is T_2 and separable	e.		
(i) cocountable	(ii) discrete	(iii) usual	(iv) cofinite	
(e) with usual	metric is not complete.			
(i) Z	(ii) Q	(iii) [0, 1]	(iv) . \mathbb{R}	
(f) $f: \mathbb{R} \to \mathbb{R}$ define	d by $f(x) = -x$ is discor	ntinuous if $\mathbb R$ has	_ topology.	
(i) discrete		· · · · · · · · · · · · · · · · · · ·	(iv) lower limit	
(g) Projections are _	<u> </u>			
(i) closed	(ii) open	(iii) one-one	(iv) homeomorphism	
(h) A compact T_2 -sp	pace is			
(i) discrete	(ii) T_3	(iii) separable	(iv) bounded	
 (a) Prove that {{-r (b) Define interior of usual topology. (c) Define closure of (d) Show that produce (e) Show that a confusion (f) Show that {(0, r) (g) Define a bounder (h) Define T₁-space 	ven. (Start a new pag $n, n\} : n \in \mathbb{Z}$) is a base for $n, n \in \mathbb{Z}$ is a base for $n, n \in \mathbb{Z}$ is a base for $n, n \in \mathbb{Z}$ and a topological stant function is always $n \in \mathbb{Z}$. The provest $n \in \mathbb{Z}$ has finite integrated and show that $n \in \mathbb{Z}$ is $n \in \mathbb{Z}$. The provest that $n \in \mathbb{Z}$ is $n \in \mathbb{Z}$.	or some topology on Z cal space. Find the in a space. Find closure cal spaces is an indiscretion property. The and show that Q is	of $(0,1)$ in \mathbb{R} rete topological space.)
•				

	2 PS01CMTH07				
	(Start a new page.) Show that intersection of two topologies on $\mathbb R$ is again a topology on $\mathbb R$, but union of two	[6]			
(b)	topologies on \mathbb{R} need not be a topology on \mathbb{R} . Show that arbitrary union of closed sets need not be closed. Is a finite union of closed sets is	[6]			
closed? Justify. OR					
(b)	Show that $A \subset \mathbb{R}$ is closed if and only if it contains its boundary.	[6]			
	(Start a new page.)				
	Define a <i>continuous function</i> and show that composition of two continuous functions is a continuous function.	[6]			
(p)	Let X be a complete metric space and $\{F_n : n \in \mathbb{N}\}$ be a family of closed subsets of X such that $F_{n+1} \subset F_n$ for all $n \in \mathbb{N}$. If $\operatorname{diam}(F_n) \to 0$, then show that $\bigcap_{n=1}^{\infty} F_n$ is singleton.	[6]			
	$ \begin{array}{c} \text{OR} \\ \text{OR} \end{array} $				
(b)	Show that projections are continuous and open.	[6]			
	(Start a new page.) Define a <i>compact</i> topological space and show that a closed subspace of a compact space is	[6]			
(d)	compact. Show that a sequentially compact metric space has Bolzano-Weierstrass Property.	[6]			
	OR	[0]			
(þ)	Show that continuous image of a compact space is compact.	[6]			
	(Start a new page.) Define a T_3 -space and show that a subspace of a T_3 -space is T_3 .	[6]			
(\mathfrak{b})	Show that a metric space is T_4 .	[6]			
/ • N	OR	[6]			
(b)	Define a T_4 -space and show that a normal space is T_3 . ###################################	[6]			
	——————————————————————————————————————				
	$\frac{1}{2}$				