| Seat No | | | No of printed pages: 2 | | |--|--|--|---------------------------------------|------| | | | Patel University | | | | | M.Sc. S | emester I Examination | , | | | | F) | 2016
Siday 21 October | | | | | 11 | riday, 21 October
10.00 to 13.00 PM | | | | | Mathem | atics: PS01CMTH02 | V | | | | | (Topology I) | • | | | | | | Maximum Marks: 70 | | | Q.1 Write the question (a) If \mathcal{B} is a base for | n number and correct a topology \mathcal{F} on X , | option number only for
then | r each question. | [8] | | | (ii) $\mathscr{B} = \mathscr{T}$ | | (iv) $X \in \mathscr{B}$ | | | (b) topology is | | · · | (41) 42 4 51 | | | 4.1 | (ii) usual | (iii) indiscrete | (iv) lower limit | | | (c) R with topo | , , | (III) indiscress | (17) tower minu | | | (i) cocountable | | (iii) indiscrete | (iv) lower limit | | | (d) \mathbb{R} with topo | ` ' | (III) IIICIBEI GUE | (14) TOMER HITTE | | | (i) cocountable | | (iii) indiscrete | (iv) lower limit | | | | • • | ontinuous if R has to | | | | (i) cocountable | | (iii) indiscrete | | | | (f) Complete metric s | , , | (m) muscrete | (iv) lower limit | | | (i) compact | | /:::\ Aigousto | ()-\ -f1t | | | (g) Projections are | | (iii) discrete | (iv) of second category | | | | | (111) | · · · · · · · · · · · · · · · · · · · | | | (i) closed | () 1 | (iii) one-one | (iv) homeomorphism | | | (h) A compact T_2 -spa | | | | | | (i) discrete | () 0 | (iii) connected | (iv) bounded | | | (b) Find the boundary (c) Show that \mathbb{R} with | $n): n \in \mathbb{N}$ is a base for $n \in \mathbb{N}$ in \mathbb{R} with discrete topology is $n \in \mathbb{N}$ | or some topology on \mathbb{R} . h the usual topology. | | [14] | | (e) State one result en (f) Show that {(0,r); (g) Define totally bound (h) Show that a finite | as using the completen $\{r>0\}$ has finite intended metric space and set is compact with e | show that R with usual me | topology. | | | • | | | (PTO) [Contd] | | | | | | | | | | 2
PS01CMTH02 | ; | |--------------|--|-----| | | S (Start a new page.) | | | | State and prove Pasting Lemma. | [6] | | (<i>b</i>) | Show that every T_2 -space is T_1 but the converse is not true. | [6] | | | OR | (O | | (b) | In \mathbb{R} with the usual topology, find the limit points of (i) \mathbb{Q} , (ii) \mathbb{N} and (iii) $\{1 + \frac{1}{n} : n \in \mathbb{N}\}$. | [6] | | Q.4 | (Start a new page.) | | | (u) | Let X be a complete metric space and $\{F_n : n \in \mathbb{N}\}$ be a family of closed subsets of X such that $F_{n+1} \subset F_n$ for all $n \in \mathbb{N}$. If diam $(F_n) \to 0$, then show that $\bigcap_{n=1}^{\infty} F_n$ is singleton. | [6] | | (b) | Define (i) a continuous function, (ii) a uniformly continuous function and prove that a continuous function on a metric space need not be uniformly continuous. OR | [6] | | (b) | For topological spaces X_1, X_2, \ldots, X_n , show that X_i is homeomorphic to a subspace of $\prod_{i=1}^n X_i$ | [6] | | | | | | 2.5 | (Start a new page.) | | | (r) | Show that a topological space X is compact if and only if every family of closed subsets of X with FIP has a nonempty intersection. | [6] | | b) : | Show that sequentially compact metric space X has Bolzano-Weierstrass Property. | [6] | | k) o | OR | | | υ, , | Show that a compact metric space is totally bounded but the converse is not true. | [6] | | .6 (| (Start a new page.) | | | 9) 1 | Let X be a topological space. Show that X is disconnected if and only if there is a nonempty | [6] | | b) { | proper clopen subset of X if and only if there is an continuous function from X onto $\{0,1\}$. Show that a compact T_2 -space is regular. | [6] | | | OR | [2] | | c) I
a | Lot V be a top-landed on a Classic V to Clas | [6] | | | \prec | | | | | |