Seat No			No of printed pages: 2	
		Patel University		
	M.Sc. S	emester I Examination	,	
	F)	2016 Siday 21 October		
	11	riday, 21 October 10.00 to 13.00 PM		
	Mathem	atics: PS01CMTH02	V	
		(Topology I)	•	
			Maximum Marks: 70	
Q.1 Write the question (a) If \mathcal{B} is a base for	n number and correct a topology \mathcal{F} on X ,	option number only for then	r each question.	[8]
	(ii) $\mathscr{B} = \mathscr{T}$		(iv) $X \in \mathscr{B}$	
(b) topology is		· ·	(41) 42 4 51	
4.1	(ii) usual	(iii) indiscrete	(iv) lower limit	
(c) R with topo	, ,	(III) indiscress	(17) tower minu	
(i) cocountable		(iii) indiscrete	(iv) lower limit	
(d) \mathbb{R} with topo	` '	(III) IIICIBEI GUE	(14) TOMER HITTE	
(i) cocountable		(iii) indiscrete	(iv) lower limit	
	• •	ontinuous if R has to		
(i) cocountable		(iii) indiscrete		
(f) Complete metric s	, ,	(m) muscrete	(iv) lower limit	
(i) compact		/:::\ Aigousto	()-\ -f1t	
(g) Projections are		(iii) discrete	(iv) of second category	
		(111)	· · · · · · · · · · · · · · · · · · ·	
(i) closed	() 1	(iii) one-one	(iv) homeomorphism	
(h) A compact T_2 -spa				
(i) discrete	() 0	(iii) connected	(iv) bounded	
(b) Find the boundary (c) Show that \mathbb{R} with	$n): n \in \mathbb{N}$ is a base for $n \in \mathbb{N}$ in \mathbb{R} with discrete topology is $n \in \mathbb{N}$	or some topology on \mathbb{R} . h the usual topology.		[14]
 (e) State one result en (f) Show that {(0,r); (g) Define totally bound (h) Show that a finite 	as using the completen $\{r>0\}$ has finite intended metric space and set is compact with e	show that R with usual me	topology.	
•			(PTO) [Contd]	

	2 PS01CMTH02	;
	S (Start a new page.)	
	State and prove Pasting Lemma.	[6]
(<i>b</i>)	Show that every T_2 -space is T_1 but the converse is not true.	[6]
	OR	(O
(b)	In \mathbb{R} with the usual topology, find the limit points of (i) \mathbb{Q} , (ii) \mathbb{N} and (iii) $\{1 + \frac{1}{n} : n \in \mathbb{N}\}$.	[6]
Q.4	(Start a new page.)	
(u)	Let X be a complete metric space and $\{F_n : n \in \mathbb{N}\}$ be a family of closed subsets of X such that $F_{n+1} \subset F_n$ for all $n \in \mathbb{N}$. If diam $(F_n) \to 0$, then show that $\bigcap_{n=1}^{\infty} F_n$ is singleton.	[6]
(b)	Define (i) a continuous function, (ii) a uniformly continuous function and prove that a continuous function on a metric space need not be uniformly continuous. OR	[6]
(b)	For topological spaces X_1, X_2, \ldots, X_n , show that X_i is homeomorphic to a subspace of $\prod_{i=1}^n X_i$	[6]
2.5	(Start a new page.)	
(r)	Show that a topological space X is compact if and only if every family of closed subsets of X with FIP has a nonempty intersection.	[6]
b) :	Show that sequentially compact metric space X has Bolzano-Weierstrass Property.	[6]
k) o	OR	
υ, ,	Show that a compact metric space is totally bounded but the converse is not true.	[6]
.6 ((Start a new page.)	
9) 1	Let X be a topological space. Show that X is disconnected if and only if there is a nonempty	[6]
b) {	proper clopen subset of X if and only if there is an continuous function from X onto $\{0,1\}$. Show that a compact T_2 -space is regular.	[6]
	OR	[2]
c) I a	Lot V be a top-landed on a Classic V to Clas	[6]
	\prec	