No. of printed pages: 2 [36] SARDAR PATEL UNIVERSITY M.Sc. (Mathematics) Semester - I Examination Wednesday, 19th April, 2017 PS01CMTH04, Linear Algebra Time: 10:00 a.m. to 1:00 p.m. Maximum marks: 70 Note: All the questions are to be answered in answer book only. Figures to the right indicate full marks of the respective question. Assume standard notations wherever applicable. Q-1 Fill up the gaps in the following: [8] 1. The dimension of the vector space \mathbb{C}^2 over \mathbb{C} is _____. (b) 2 (d) infinite 2. Let V_1 and V_2 be two subspaces of a vector space V. Then ____ need not be a subspace of V. (a) $V_1 + V_2$ (b) $V_1 \cup V_2$ (c) $L(V_1 \cup V_2)$ (d) $V_1 \cap V_2$ 3. Let V be a vector space over a field F and $T \in A(V)$ be such that $T^2 + 5T + I = 0$. Then . (a) T is regular (b) T is singular (c) $\det(T) = 0$ (d) T is not onto 4. Let V be a vector space over F and $T \in A(V)$ be such that $0 \neq T \neq I$ and $T^2 = T$. Then the characteristic roots of T are _____. (a) 0 and 1 (b) 0 and 2 (c) 0 and 0 (d) 1 and 1 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined as $T(x_1, x_2, x_3) = (0, x_1, x_2)$. Then the minimal polynomial of T is _____. (a) p(x) = x(b) $p(x) = x^2$ (c) p(x) = 0(d) $p(x) = x^3$ 6. Let V vector space over F, W be subspaces of a V and $T \in A(V)$. W is invariant under T if _____. (a) T must be one-one (b) T(W) = V (c) $T(W) \subset W$ 7. Let $A \in M_n(F)$ be nilpotent. Then $det(A) = \underline{\hspace{1cm}}$. (a) 1 (b) -1(d) n 8. Let $A, B \in M_n(F)$ for some field F. Then _ (a) $tr(\lambda A) = \lambda^n tr(A)$ (c) $\det(A+B) = \det(A) + \det(B)$ (b) $\det(\lambda A) = \lambda \det(A)$ (d) tr(A + B) = tr(A) + tr(B)Q-2 Attempt Any Seven of the following: [14] (a) Check whether $v_1 = (1, 2, 1)$, $v_2 = (0, 1, 1)$ and $v_3 = (0, 0, 1)$ are linearly independent over \mathbb{R} or not? (b) Let $W = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y = z\} \subset \mathbb{R}^3$. Show that W is a subspace of \mathbb{R}^3 . What is the dimension of W? (c) Let V be a finite dimensional vector space over a field F and $T \in A(V)$. Show that $rank(ST) \le rank(T)$. (d) Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x,y,z) = (x-y+z,x-2y,x-2z), \ (x,y,z) \in \mathbb{R}^3$. Find the matrix of T with respect to standard basis of \mathbb{R}^3 . (e) Let V be a vector space over a field F and $T \in A(V)$. Show that $\ker(T)$ is invariant

under T.

- (f) Let V be a vector space over F and $S, T \in A(V)$ such that S is nilpotent. Show that ST is nilpotent if ST = TS.
- (g) Show that similar matrices have same determinant.
- (h) Find the inertia of the quadratic equation $x_1 + x_2 + x_3 = 0$.
- (i) For $A, B \in M_n(\mathbb{R})$, show that tr(AB) = tr(BA).
- Q-3 (a) Let V be a finite-dimensional vector space over a field F and W be a subspace of V. [6] Show that W is finite-dimensional and $\dim V/W = \dim V \dim W$.
 - (b) Let V be a vector space and $\{v_1, v_2, \ldots, v_n\}$ be a basis of V. If $\{u_1, \ldots, u_m\}$ in V [6] are linearly independent then $m \leq n$.

OR

- (b) Let V be a vector space over F. Show that V is isomorphic to a subspace of \hat{V} . [6]
- Q-4 (a) Let \mathcal{A} be an algebra over F. Show that \mathcal{A} is isomorphic to a subalgebra of A(V) for some vector space V over F.
 - (b) Let V be a vector space over F and $T \in A(V)$. Show that characteristic vectors corresponding to distinct characteristic roots of T are linearly independent.

OR

- (b) Let V be a vector space over F and $T \in A(V)$. Show that T is regular if and only if the constant term of the minimal polynomial for T is non-zero.
- Q-5 (a) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Then show that the invariants of T are unique.
 - (b) Let V be an n-dimensional vector space over F. If $T \in A(V)$ has all its characteristic roots in F, then show that T satisfies a polynomial of degree n in F[x].

OR

- (b) Let V be a finite dimensional vector space over F and $T \in A(V)$. Let $V = V_1 \oplus V_2$, where V_1 and V_2 are subspaces of V invariant under T. Let $T_i = T \mid_{V_i}$ and $p_i(x) \in F[x]$ be the minimal polynomial for T_i , i = 1, 2. Show that the least common multiple of $p_1(x)$ and $p_2(x)$ is the minimal polynomial for T.
- Q-6 (a) For $A, B \in M_n(F)$, show that $\det(AB) = \det(A) \det(B)$. [6]
 - b) i. Let V be a finite-dimensional vector space over F and $S, T \in A(V)$ such that ST TS commutes with S. Show that ST TS is nilpotent. [4]
 - ii. Find the symmetric matrix associated with the quadratic form: [2] $-y^2 2z^2 + 4xy + 8xz 14yz.$

OR

(b) Prove that the determinant of a triangular matrix is the product of its entries on the main diagonal. [6]

#