Sardar Patel University, Department of Mathematics M.Sc. (Mathematics) External Examination 2017; Code:- PS01CMTH23: Subject:- Functions of Several Real Variables; Date: 03-11-2017, Friday; Time- 2.00 pm to 5.00 pm; Max. Marks 70 Note: Notations and Terminologies are standard. [08] Q.1 Choose correct option from given four choices. (i) Let  $x, y \in \mathbb{R}^n$  be orthogonal (i.e. perpendicular) vectors. Then  $||x + y||^2 =$ (c)  $(\|x\| + \|y\|)^2$ (d) ||x|||y||(b) ||x|| + ||y||(a)  $||x||^2 + ||y||^2$ (ii) Which of the following is true? (c)  $\lim_{x\to 0} \frac{\cos x}{x} = 1$ (a)  $\lim_{x\to 0} x \cos(\frac{1}{x}) = 0$  (b)  $\lim_{x\to 0} \frac{\sin x}{x} = 0$ (d) none (iii) Let  $f: \mathbb{R} \longrightarrow \mathbb{R}$  be defined as  $f(t) = 3t^3$ . Then Df(2) =(d)  $\lambda_{48}$ (b)  $\lambda_{24}$ (a)  $\lambda_{12}$ (iv) Let a=(2,1) and  $f:\mathbb{R}^2\longrightarrow\mathbb{R}$  be defined as  $f(x)=x_1x_2$ . Then Df(a)=(c)  $\pi_1 + 2\pi_2$ (b)  $2\pi_1 + \pi_2$ (a)  $\pi_1 + \pi_2$ (v) Define  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  as  $f(x) = 2x_1e^{x_2}$ . Then  $D_1f(0) =$ (b) 0 (a) -1(vi) Let  $a \in \mathbb{R}^n$  be fixed. Let  $f : \mathbb{R}^n \longrightarrow \mathbb{R}$  be continuous at a. Then (c)  $D_j f(a)$  exist (d) none (b)  $D_x f(a)$  exist (a) Df(a) exists (vii) Let  $S \in \mathcal{T}^3(V)$  and  $T \in \mathcal{T}^5(V)$ . Then  $S \otimes T$  belongs to (c)  $T^5(V)$ (b)  $T^{8}(V)$ (a)  $T^{15}(V)$ (viii) The dimension of  $\Lambda^6(\mathbb{R}^4)$  is (d) 4096 (c) 24 (b) 15 (a) 0 [14]Q.2 Attempt any seven. (i) Prove that  $||x|| \leq \sum_{i=1}^{n} |x_i|$   $(x \in \mathbb{R}^n)$ . (ii) Define oscillation  $\overline{o(f;a)}$  of  $f:\mathbb{R}^n\longrightarrow\mathbb{R}$  at a. (iii) Define  $f: \mathbb{R} \longrightarrow \mathbb{R}$  as  $f(x) = x \cos(x)$ . Find  $Df(0): \mathbb{R} \longrightarrow \mathbb{R}$ . (iv) Let  $f:\mathbb{R}^n\longrightarrow\mathbb{R}^m$  be differentiable at  $a\in\mathbb{R}^n$ . Then prove that its each component function  $f^i: \mathbb{R}^n \longrightarrow \mathbb{R}$  is differentiable at a. (v) If  $f: \mathbb{R}^n \longrightarrow \mathbb{R}$  has maximum value at a and  $D_i f(a)$  exists, then show that  $D_i f(a) = 0$ . (vi) Let  $f: \mathbb{R}^n \longrightarrow \mathbb{R}$  and  $a, x \in \mathbb{R}^n$ . Show that  $D_{sx}f(a) = sD_xf(a)$   $(s \in \mathbb{R})$ . (vii) Define  $T(x,y) = x_1y_2$   $(x,y \in \mathbb{R}^2)$ . Find Alt(T). (viii) Define tensor product and wedge product. (ix) Let  $f: \mathbb{R}^n \longrightarrow \mathbb{R}$  be differentiable. Define  $df(p)(v_p) := Df(p)(v) \ (p \in \mathbb{R}^n; \ v_p \in \mathbb{R}^n)$ . Prove

(Continue on page-2)

that  $df(p): \mathbb{R}_p^n \longrightarrow \mathbb{R}$  is linear.

| Q.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>(a) Let x, y ∈ ℝ<sup>n</sup>. Then Prove that  ⟨x, y⟩  ≤   x     y   and   x + y   ≤   x   +   y  .</li> <li>(b) Let A ⊂ ℝ<sup>n</sup>, let f : A → ℝ be a bounded function, and let a ∈ A. Then prove that f is continuous at a iff o(f; a) = 0.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [6] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [6] |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | **  |
| (b) Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear map. Prove that there exists an $n \times m$ matrix $A$ such that $T(x) = xA$ $(x \in \mathbb{R}^n)$ . Further, if $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is defined as $T(x) = (x_1 + x_3, x_1 - 2x_2 + x_3)$ , then find $A$ corresponding to $T$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [6] |
| $oxed{Q.4}$ . The second of | ίοὶ |
| (a) If a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$ , then prove that there exists a unique linear transformation $\lambda: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ such that $\lim_{h \to 0} \frac{\ f(a+h) - f(a) - \lambda(h)\ }{\ h\ } = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [6] |
| (b) Let $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}$ be differentiable at $a$ . Prove that $f + g$ and $fg$ are differentiable at $a$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [6] |
| (b) Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| $f(x) = \begin{cases} \frac{x_1 x_2 }{\ x\ } & \text{(if } x \neq 0) \\ 0 & \text{(if } x = 0) \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Discuss the differentiability of $f$ at 0. If it is differentiable at 0, then find its derivative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Q.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [6] |
| (a) Let $a = (1,0)$ . Define $f : \mathbb{R}^2 \to \mathbb{R}^3$ as $f(x) = (e^{x_1}, x_1 + \sin(x_2), \log(x_1) - x_2)$ . Then find $f'(a)$ and $Df(a)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| (b) Prove that continuously differentiable function is differentiable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [6] |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [6] |
| (b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbb{R}^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |
| (b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $a$ . Prove that $D_x f(a)$ exists for any $x \in \mathbb{R}^n$ . Moreover, find $D_x f(0)$ for the function $f: \mathbb{R}^3 \to \mathbb{R}$ defined as $f(y) = 2y_1 + y_2^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [6] |
| 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [-1 |
| (a) Define $Alt(T)$ . Prove that if $T \in \mathcal{T}^k(V)$ , then $Alt(T) \in \Lambda^k(V)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [6] |
| (b) Let $\omega \in \Lambda^k(V)$ and $\eta \in \Lambda^l(V)$ . Then prove that $\omega \wedge \eta = (-1)^{kl}(\eta \wedge \omega)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [6] |
| (b) Define "k-form" on $\mathbb{R}^n$ . Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be differentiable. Then prove that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [6] |
| $\widetilde{f}_{1*}(d\pi_i) = \sum_{j=1}^n D_j f^i \cdot d\pi_j \ \ (1 \leq i \leq m).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| J 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |

## THE END