SEAT	No.

[81]

No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester I

Wednesday, 01 November 2017 2.00 p.m. to 5.00 p.m.

		PS01CMTH21 - Co			
			e, in the second se	Maximum Marks: 70	
		minimum value of $\{ z \}$	$-a + z+a :z\in\mathbb{C}$		[8]
(2)	Arg(i) + Arg(-i) =			1	
	(a) 0	(b) π	(c) 2π	(d) $\{2n\pi:n\in\mathbb{Z}\}$	
(3)	If v and V are harmonic of the following is not	onic conjugates of a hat true?	rmonic function u on	a domain D , then which	
	(a) $v = V$	(b) $v_x + V_y = v_y + V_z$	v_x (c) $v_x = V_x$	$(d) V_{xx} + V_{yy} = 0$	
(4)	The set of singularity	of the function $\cot 2z$			
		(b) $\{2n\pi:n\in\mathbb{Z}\}$		(d) $\left\{\frac{n\pi i}{2}:n\in\mathbb{Z}\right\}$	
(5)	$\int_{ z =1} \frac{z}{z-2} dz = \underline{\qquad}$				
	(a) 0	(b) 4π <i>i</i>		(d) $\frac{1}{\pi i}$	
(6)	Which of the followin	g is a bounded function	n on C?		
	(a) $\cos z$	(b) e^{-z}	(c) e^{-z^2}	(d) none of these	
(7)	The Taylor series of $\frac{1}{1}$	$\frac{1}{+z^2}$ about 2 is valid in	N(2,R) if $R =$		
	(a) $\sqrt{5}$		(c) $\sqrt{11}$	(d) $\sqrt{13}$	
(8)	The point 0 is a pole	of $\frac{\tan z}{z^2}$ of order			
	(a) 1	(b) 2	(c) 3	(d) 4	
(a)] (b)] (c)] (d)] (e)]	whenever $0 < z - z_0 $ Let $n \in \mathbb{N} \setminus \{1\}$. Find if $z \in \mathbb{C}$, then show that if f is an entire function	\mathbb{R} , then show that $\overline{\alpha}z$ and $w_0 \neq 0$, then show	ow that there is $\delta > 1$ numbers satisfying z' 1. $f(\overline{z})$ is an entire $f(\overline{z})$	s a line. 0 such that $ f(z) > 0$ $f(z) = 0$	[14]

www.gujaratstudy.com

- (g) Let f be the function $f(z) = e^z$ and R the rectangular region $[0,1] \times [0,\pi]$. Find the points in R where u(x,y) = Re f(z) reaches its maximum and minimum values.
- (h) Find the Taylor series of $\frac{1}{z-2}$ about i.
- (i) Find the inverse of a bilinear transformation $w(z) = \frac{2z+3}{3z+2}$.

Q.3

- (a) Let f = u + iv be defined in a neighbourhood of $z_0 = x_0 + iy_0$. If the functions u_x, u_y, v_x, v_y are continuous in a neighbourhood of (x_0, y_0) and if $u_x(x_0, y_0) = v_y(x_0, y_0)$ and $u_y(x_0, y_0) = v_y(x_0, y_0)$ $-v_x(x_0, y_0)$, then show that f is differentiable at z_0 .
- (b) Define $\lim_{z\to z_0} f(z) = \infty$. If P is a polynomial of degree $n \ge 1$, then show that $\lim_{z\to\infty} P(z) = \infty$. [6]

OR

(b) Give an example of of a complex function which is differentiable at exactly one point. [6] Show that the map $g \circ f$ is differentiable at z_0 whenever f is differentiable at z_0 and g is differentiable at $f(z_0)$.

Q.4

- (c) Let U be an open subset \mathbb{C} . Let $f:U\to\mathbb{C}$ be analytic such that f'(z)=0 for all $z\in\mathbb{C}$. Can we conclude that f is a constant map? Why? If not, what condition on U implies that f is a constant map? Justify.
- (d) Let $N(z_0, R)$ be the disc of convergence of the power series $S(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n$. If C [6] is a contour in $N(z_0,R)$ and g is a continuous function C, then show that $\int_C g(z)S(z)dz =$ $\sum_{n=0}^{\infty} a_n \int_C g(z) (z-z_0)^n dz$. State the results you use.

- (d) Suppose that v is a harmonic conjugate of u on a domain D. Show that f = u + iv is analytic on D. Find an analytic function f whose real part is $\frac{2xy}{(x^2+y^2)^2}$. Q.5
- (e) If a function f is analytic and nonconstant in a domain D, then show that |f| has no [6] maximum value in D. State the results you use.
- (f) Let $C: z(t), a \leq t \leq b$, and let f be piecewise continuous on C. Define $\int_C f(z)dz$. If $f(z) = \pi \exp(\pi \overline{z})$ and C is the boundary of the square with vertices at the points 0, 1, 1+iand i, the orientation of C being in the counterclockwise direction, then evaluate $\int_C f(z)dz$.

(f) If $v:\mathbb{R}^2\to\mathbb{R}$ is a nonconstant harmonic function, then show that v is unbounded. State carefully the results you use.

Q.6

- (g) Let z_0 be an isolated singularity of f. Show that z_0 is a pole of f of order m if and only if there is a function φ which is analytic at z_0 , $\varphi(z_0) \neq 0$ and $f(z) = \frac{1}{(z-z_0)^m} \varphi(z)$ for all z in some deleted neighborhood of z_0 . Also, show that if m=1, then $\operatorname{Res}_{z=z_0}f=\lim_{z\to z_0}(z-z_0)f(z)$ and if m>1, then $\operatorname{Res}_{z=z_0}f=\frac{1}{(m-1)!}\frac{d^{m-1}}{dz^{m-1}}[(z-z_0)^mf(z)]_{|z=z_0}$.

 (h) State Cauchy's Residue Theorem. Hence evaluate $\int_C \frac{\cot z}{z^4}dz$ and $\int_C \frac{\sinh z}{z^4(1-z^2)}dz$, where C is
- [6] a positively oriented circle $|z| = \frac{1}{2}$. [6]

(h) State Laurent's Theorem. Find the Laurent series expansion of $\frac{1}{(z-1)(z-3)}$ about i in (all [6] the three) appropriate regions.

նննեննեն