SARDAR PATEL UNIVERSITY Pages: 04

M.SC.(IT) SEM-I (NC) EXAMINATION

2015

SATURDAY, 18TH APRIL

10:30 AM TO 12:30 PM

~30	11-11/02:	MATHEMATICS-I		Total Ma	rks: 70				
Q:1	Choose the		lowing, mention the co	rect option with the answers i	n the [10]				
(1)	Chromatic	number is the	number of color re	quired to paint graph G.					
	(a) total	(b) average	(c) minimum	(d) maximum	· ·				
(2)	An alterna	ating sequence of vertic	es and edges in graph	is called:					
` /	(a) trail	(b) cycle (c) path	(d) degree						
(3)) + 2(1, 3, –3) =							
	(a) (1,2,	, -4) (b) (4, -2, -4)	(c) (4,2,-4)	(d) (4,2,4)					
(4)	Norm of the vector $u = (-1, 2, -2)$ is								
(7)	(a) 9	(b) 3	(c) 1 (d) – 9					
(5)	The degre	e of an isolated vertex is:							
` ,	(a) 0	(b) 1	(c) 2	(d) -1					
(6)	In a conne	In a connected map with R =10, V = 25 then E =							
	(a) 24	(b) 30	(c) 33	(d) 38					
(7)	Mode of 2	2, 3, 7, 6, 9, 6, 4, 8 is							
	(a) 7	(b) 6	(c) 4	(d) 9					
(8)	Geometric	mean of x, y, z is given b	ру						
	(a) \sqrt{xyz}	(b) $\sqrt{x+y+}$	\overline{z} (c) $\sqrt[3]{xy}$	(d) none of these					
(9)	The degree of each vertex of the complete graph Kg is:								
(~)	(a) 49	(b) -7	(c) 7	(d) 1	,				
10)	A Square	matrix A is said to be sym	metric if						
	(a) $A \neq A^T$			(d) None of these					
Q:2	Answer the	e following in short. (Any	Ten)		[12]				
(1)	Find the de	egree of vertices V={P _{1,} P	_{2,} P _{3,} P _{4,} P ₅ } where E={	(P ₁ , P ₄),(P ₁ , P ₂),(P ₁ , P ₁),(P ₃ ,	P ₄)}				

- (2) Define the terms: Map and Regions.
- (3) Define: Planar graph. Is below graph is planar?

(4) If
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 5 & 3 \\ 0 & 2 & 5 \end{bmatrix}$$
 then find $A + A^{T}$ and $A - A^{T}$.

- (5) Define graph and multigraph.
- (6) Explain quantitative data.
- (7) Define arithmetic mean.
- (8) Find x, y, z if (2x, 3, y) = (4, x + z, 2z).
- (9) Define bridge and cut points.
- (10) Define tree and spanning trees of the graph.

 Define: Incidence matrix.
- (11)
- (12) Obtain median of the data 2, 5, 6, 2, 4, 5, 8 and 6.
- Q:3 Define the dot product and norm of vector. Let U=(5,4,1), V=(3,-4,1), (i) Find norm of U and V. (ii) [5]

[5]

[5]

[5]

- (a) Show that U and V are orthogonal.
- (b) Let A = $\begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$. Find f (A), where f(x) = $x^2 4x 12$.

OR

Q:3
(c) If
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 0 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 2 & 3 \\ 7 & 1 & 5 \end{bmatrix}$ then prove that $(AB)^T = B^T A^T$

- (d) Using Cremer's rule solve the simultaneous equations 3x 2y = 5, 5x + 4y = 1.
- Q:4 Draw the graph G corresponding to each adjacency matrix given below.

 $\begin{bmatrix} 1 & 3 & 0 \\ 3 & 0 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix}$

(b) Consider the graph G as

- (i) Find all simple paths from v_1 to v_6 .
- (ii) Find all trails from v_1 to v_6 .
- (iii) Find d (v_1 , v_5).
- (iv) Find all cycles in G.

OR

Q:4 Find the incidence matrix and adjacency matrix for the following Graphs:

[5]

(d) Define connected graph. Determine whether or not each of the graphs is connected or not:

Q:5

[5]

(a) Identify cycle or closed path that borders each region of the following map. Also find the degree of each region and chromatic number of the following maps:

[5]

(b) Define the coloring of a map. Paint the following maps with minimum number of colors:

OR

Q:5

(c) Find chromatic number for the following graphs using Welch-Powell algorithm:

(d) State Euler's formula. Verify it for the following graphs:

[5]

Q:6 Calculate Mean, Median and Mode for the following data.

[10]

weight(lbs) X	130	135	140	145	146	148	149	150	157
no. of persons(f)	3	4	6	6	3	5	2	1	1

OR

Q:6 The marks of 40 students who attended a workshop competitive exam are as follows:

[10]

27	32	57	34	36	48	49	31	51	34
49	45	51	29	47	36	50	46	30	46
35	35	48	41	53	36	37	47	47	30
43	45	42	30	46	50	28	44	48	49

- [i] Classify the above data in exclusive classes & one of them being 40 44.
- [ii] Obtain mean and median of the distribution.