2.. | 28 | 7 | SARD | AR PATEL UNIV | | Printed pa | | | |--|--|--|--|---|--|--|--| | Z- 75 | لہ | | MESTER-I) EXA | The second secon | | | | | | | | 2017 | | | | | | | | Wedr | nesday, 1 st Nove | ember | | | | | | i . | | 0 a.m. to 01.00 | n.m | | | | | | | | MISTRY: PS01CC | | the production | | | | | | | | TRY-I), and the figure and | | | | | | | • | | | | | | | te:-fi | gures to the right | indicate full | marks. | organista (M. 1900) promeny and
The organism of the state | atal waaulu | | | | O 1 | American Man East | | Switcher Control of gr | | | | | | Ų.I. | Answer the follow | ing: | anima y ayaya | ing a salah sa
Kanada salah s | | | | | 1 | Due to effect of an | t dawn anar- | | f angular momentum ope | | | | | 4. | is: | r down opera | ioi, eigenvalue o | r angular momentum ope | erator (Lz) | | | | | a. Decrease by ħ | h Incre | ease by ħ | n in the department of the contract con | e en la generation.
L'Engage Designation | | | | | c. Remain same | | ease by 11/2 | | | | | | | | ۵, ۱۱۱۵۱۰ | - with | Market State State | | | | | 2. | Due to distortion a | along y-axis; e | nergy of the state | E221 is decrease hv | | | | | * | Due to distortion along y-axis, energy of the state E ₂₂₁ is decrease by:
a. $-\frac{h^2}{ML^2}$ b. $-\frac{h^2}{ML^3}$ c. $-\frac{h^2}{4ML^2}$ d. $-\frac{h^2}{4ML^3}$ | | | | | | | | | ML ² | ML^3 | $C \frac{1}{4ML^2}$ | $\Omega_{\bullet} = \frac{\Omega_{\bullet}}{4ML^3}$ | . Linnager Liv | | | | | | | | | and the second second | | | | 2 | TO SERVED THE SERVER STREET | Mark to the first | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | and the second s | | | | | 3. | The boundary cond | dition for the i | rotational motion | of particle are: | | | | | 3. | The boundary cond | dition for the ι b. 0 to π | rotational motion $c. \ 0 \ to \ 2\pi$ | of particle are:
d L/2 to + L/2 | er Blandigelike
Hymotologie
L | | | | * . | The boundary conda. 0 to L | dition for the ι b. 0 to π | rotational motion c. 0 to 2π | of particle are;
d L/2 to + L/2 | er (1919-1955)
Beginnin ter ome s
Fin | | | | V | The boundary cond
a. 0 to L
The value of associ | dition for the n b. 0 to π iated Laguerre | rotational motion c. 0 to 2π | of particle are:
d L/2 to + L/2
n =1 and l = 0 system is: | | | | | V | The boundary conda. 0 to L | dition for the ι b. 0 to π | rotational motion c. 0 to 2π polynomials for c6 | of particle are;
d L/2 to + L/2
n = 1 and l = 0 system is;
d 1 | er ettergeter
Herrichter
Gerfelige Te
errente er er | | | | V | The boundary cond
a. 0 to L The value of associ
a. 6 The expression for | dition for the π b. 0 to π iated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 | of particle are:
dL/2 to +L/2
n =1 and l = 0 system is:
d1 | en e | | | | 4. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $\langle \Psi^1 \hat{V} \Psi^2 \rangle$ | dition for the r
b. 0 to π
lated Laguerre
b. 1 | rotational motion c. 0 to 2π polynomials for c 6 der perturbation | of particle are;
d L/2 to + L/2
n = 1 and l = 0 system is;
d 1
energy is: | or an agency of the large th | | | | 4. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $\langle \Psi^1 \hat{V} \Psi^2 \rangle$ | dition for the r b. 0 to π lated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: | Harrist Services | | | | 4. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $<\Psi^1 \hat{V} \Psi^2>$ b. $<\Psi^2 \hat{V} \Psi^2>$ c. $<\Psi^0 \hat{V} \Psi^3>$ | dition for the r b. 0 to π lated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: | Harrist Services | | | | 4. | The boundary cond a. 0 to L The value of associa. 6 The expression for a. $<\Psi^1 \hat{V} \Psi^2>$ b. $<\Psi^2 \hat{V} \Psi^2>$ | dition for the r b. 0 to π lated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation | of particle are;
d L/2 to + L/2
n = 1 and l = 0 system is;
d 1
energy is: | Harrist Services | | | | 4. 5. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $<\Psi^1 \mathring{V} \Psi^2>$ b. $<\Psi^2 \mathring{V} \Psi^2>$ c. $<\Psi^0 \mathring{V} \Psi^3>$ d. $<\Psi^0 \mathring{V} \Psi^4>$ | dition for the π b. 0 to π iated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: | The second secon | | | | 4. 5. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \hat{V} \Psi^2 >$ b. $< \Psi^2 \hat{V} \Psi^2 >$ c. $< \Psi^0 \hat{V} \Psi^4 >$ The value of ioniza | dition for the π b. 0 to π iated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: | The second secon | | | | 4. 5. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \mathring{V} \Psi^2 >$ b. $< \Psi^2 \mathring{V} \Psi^2 >$ c. $< \Psi^0 \mathring{V} \Psi^4 >$ The value of ionizatis: | dition for the π b. 0 to π iated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: | and the second of o | | | | 4. 5. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \mathring{V} \Psi^2 >$ b. $< \Psi^2 \mathring{V} \Psi^2 >$ c. $< \Psi^0 \mathring{V} \Psi^4 >$ The value of ionizatis: a2.75 a.u. | dition for the π b. 0 to π iated Laguerre b. 1 the fourth ord | rotational motion c. 0 to 2π polynomials for c 6 der perturbation | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: | Hole Got and a second of the s | | | | 4. 5. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \mathring{V} \Psi^2 >$ b. $< \Psi^2 \mathring{V} \Psi^2 >$ c. $< \Psi^0 \mathring{V} \Psi^4 >$ The value of ionizatis: a2.75 a.u. b4.00 a.u. | dition for the π b. 0 to π iated Laguerre b. 1 the fourth ord tion energy of | rotational motion c. 0 to 2π polynomials for c 6 der perturbation helium atom in p | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: | Howard Comments of the Comment th | | | | 4. 5. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \mathring{V} \Psi^2 >$ b. $< \Psi^2 \mathring{V} \Psi^2 >$ c. $< \Psi^0 \mathring{V} \Psi^4 >$ The value of ionizatis: a2.75 a.u. b4.00 a.u. c. 2.00 a.u. | dition for the π b. 0 to π iated Laguerre b. 1 the fourth ord tion energy of | rotational motion c. 0 to 2π polynomials for c 6 der perturbation helium atom in p | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: | Howard Comments of the Comment th | | | | 4. 5. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \mathring{V} \Psi^2 >$ b. $< \Psi^2 \mathring{V} \Psi^2 >$ c. $< \Psi^0 \mathring{V} \Psi^4 >$ The value of ionizatis: a2.75 a.u. b4.00 a.u. | dition for the π b. 0 to π iated Laguerre b. 1 the fourth ord tion energy of | rotational motion c. 0 to 2π polynomials for c 6 der perturbation helium atom in p | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: energy is: energy is: | Howard and the second of s | | | | 4.5.6. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \mathring{V} \Psi^2 >$ b. $< \Psi^2 \mathring{V} \Psi^2 >$ c. $< \Psi^0 \mathring{V} \Psi^4 >$ The value of ionizatis: a2.75 a.u. b4.00 a.u. c. 2.00 a.u. d. 0.75 a.u | dition for the r b. 0 to π iated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation helium atom in p | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: energy is: coresence of repulsion energy | a deposit depo | | | | 4.5.6. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \mathring{V} \Psi^2 >$ b. $< \Psi^2 \mathring{V} \Psi^2 >$ c. $< \Psi^0 \mathring{V} \Psi^4 >$ The value of ionizatis: a2.75 a.u. b4.00 a.u. c. 2.00 a.u. d. 0.75 a.u Which of the follow | dition for the r b. 0 to π iated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation helium atom in p | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: oresence of repulsion energy is: rlap integral? | a phagain and | | | | 4.5.6. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \mathring{V} \Psi^2 >$ b. $< \Psi^2 \mathring{V} \Psi^2 >$ c. $< \Psi^0 \mathring{V} \Psi^4 >$ The value of ionizatis: a2.75 a.u. b4.00 a.u. c. 2.00 a.u. d. 0.75 a.u Which of the follow a. HAB | dition for the r b. 0 to π iated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation helium atom in p | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: coresence of repulsion energy is: coresence of repulsion energy is: | en en egen
en en en en en
en en en
en en en en en
en en en en en
en en en en en en
en en en en en en
en en en en en en en
en en en en en en en
en en en en en en en en
en en en en en en en en en
en en en en en en en en en en
en en en en en en en en en en
en en en en en en en en en en en
en en en
en en e | | | | 4.5.6. | The boundary conda. 0 to L The value of associa. 6 The expression for a. $< \Psi^1 \mathring{V} \Psi^2 >$ b. $< \Psi^2 \mathring{V} \Psi^2 >$ c. $< \Psi^0 \mathring{V} \Psi^4 >$ The value of ionizatis: a2.75 a.u. b4.00 a.u. c. 2.00 a.u. d. 0.75 a.u Which of the follow | dition for the r b. 0 to π iated Laguerre b. 1 the fourth ore | rotational motion c. 0 to 2π polynomials for c 6 der perturbation helium atom in p | of particle are: d L/2 to + L/2 n = 1 and l = 0 system is: d 1 energy is: oresence of repulsion energy is: rlap integral? | en en egen
en en en en en
en en en
en en en en en
en en en en en
en en en en en en
en en en en en en
en en en en en en en
en en en en en en en
en en en en en en en en
en en en en en en en en en
en en en en en en en en en en
en en en en en en en en en en
en en en en en en en en en en en
en en en
en en e | | | | | The value of spin multiplici | ty for Est molecule is: | | | | |----------|--|---|---|---------------------------|-------------------| | 8. | | ty for 12 moreonic is: | e construir s | | | | | a. Four | | ** | | | | | b. One | | High state of the | | | | | c. Two | \$10 at 1 | | | - | | | d. Three | minus no filipad | sueste est. | | | | Q.2. | Attempt any <u>SEVEN</u> of the | following: | ra 1960 - ra
Mereda gre | | 14 | | 1. | What are the application of | quantum mechanical | tunneling? | | | | 2. | Evaluate the commutator | | | | | | | Explain the total wave fund | ation for hydrogen like | e atom. | 3.47 | The second second | | 3.
4. | Derive the kinetic energy | of harmonic oscillator | • | - | • | | | Derive the first order pertu | rhation energy equati | on. | *** | : - | | 5.
6. | Calculate the total energy | of helium atom in
= 0.435 x10 ⁻¹⁷ Js. and | presence and a
 1j = 6.24 X 10 ¹ | °ev) | ion | | 7. | Evaluin the handing in LiH | on the basis of valent | ce bond treatmo | ent. | | | 8. | The π _u 2Px orbital is higher | in energy than $\sigma_g 2Pz$ | for the F2 syste | m. Explain. | | | 9. | Explain the eigenvalue equ | uation. | . • | | | | Q.3.A. | Show that square of angu | llar momentum oper | t operator (L+). | Mulie combonem | . 01 | | - | angular momentum oper | ator (Lx) does not co | ommute with co | omponent of angu | ular | | | momentum operator (Ly) | and ladder operator | (L₊). | | refer a | | 7 | | | | c II | ters 6 | | В. | Explain the utility of part | icle in box model and | d calculate the | following parame | leis o | | | for the butadiene molecu | le: | | | | | | 1. Lowest absorption free | luency in cm ⁻² . | | • | | | | 2. Wave length of light at | sorbed in nm. | e 4. | e i i i i en en en este i | | | · | 3. Total ground state ene | rgy in cm ⁻¹ . | | 0.06 V 103 cm-1 | The | | | [Given: h=6.626 X 10 ⁻³⁴ | $J_{S.}, 1J = 6.24 \times 10^{10}$ | evano lev= | o.00 A 10 Cill | C-C | | | length of the butadiene | is equal to the leng | tn of carbon cr | A v 10-7 cm-11 | | | | bond length on either sid | le and average C-C bo | ind length is our | 4 X 10 Cit 1 | | | | | | | | | | | OR | | 12.45 | | 4" 1 | | В | . Answer the following: | | | | | | 1 | . Derive the equations for | Hamiltonian and ang | ular momentun | n operators. | | | 2 | Derive the wave function | n and energy equation | on for a translat | ional motion of a | free | | | particle. | <u> </u> | • | | | | Q.4.A | Anguar the following: | | | | 6 | | · · | Derive the value of nor | malization factor (N) | of the radial eig | anfunction for | | | - | n = 1, l = 0 and $n = 3, l = 0$ | 1 systems. | | | | | ; | 2. Derive the third degree | e of Hermite's polyno | mial. | | | | | | • | | | ³ 3 | | | | | | | | | В. | Answer the following: | 6 | | | |----------------|--|---|--|--| | 1. | Derive the Schrödinger equation for the vibrational motion of a particle in a one dimensional harmonic oscillator. | | | | | 2. | Derive the normalization factor and the characteristic of eiganfunction of a one dimensional harmonic oscillator. | | | | | | <u>OR</u> | | | | | B.
1.
2. | Answer the following: Derive the recursion formula for the Hermite's differential equation. Explain the rotational motion of particle on a sphere. | | | | | Q.5.A. | Explain the Dirac notation and discuss the time independent perturbation theory for non-degenerate case. | | | | | В. | Explain the spin-orbit interaction Derive the term symbols arising out of the coupling between an electron in d-orbital and an electron in f-orbital. | 6 | | | | | <u>OR</u> | | | | | В. | Answer the following: | | | | | 1.
2. | Discuss the Hatree-self consistent field methods. Derive the equation for the first order correction to wave function. | | | | | Q.6.A. | Discuss the Born- Oppenheimer approximation for the solution of Schrödinger equation. | | | | | В | Explain the MO theory of bonding for hydrogen molecule. | 6 | | | | | <u>OR</u> | | | | | В. | Answer the following: | | | | | 1 | Explain the electronic state and term symbols for diatomic molecule. Determine
the term symbols for the Be₂, N₂⁺ and O₂⁺ molecules. | | | | | 2 | and the second s | | | | | | *************************************** | | | |