

[29]

No. of Printed Pages: 3

SARDAR PATEL UNIVERSITY

M.Sc Chemistry, First Semester Examination

Friday, Date: 24-04-2015 Time: 10:30 a.m. to 01:30 p.m.

Subject: Physical Chemistry-I Paper: PS01CCHE03

N.R.	(1)	Figures	tο	the	right	indicate	marks.
14.0.	121	FIRUI C3	w	LIST	HIGHL	muicate	IIIQI NO.

(a) molality (b) formality (c) molarity (d) formality

(2) Attempt all questions.

[Total Marks: 70]

Q.1 Choose the correct alternatives from the following 80 At freezing point, the solution will always be in equilibrium with .. 1 (a) pure solid solvent (b) pure liquid solvent (c) pure solid solute (d) pure liquid solute 2 Blood is the example ofsystem. (a) heterogeneous system (b) homogeneous system (c) any solution (d) colloidal solution Which of the following is an extensive property? 3 (a) mass (b) pressure (c) density (d) temperature In reaction isotherm, if reaction is spontaneous then which of the following is true (a) $J_a \le K$ (b) $J_a \leq K$ (c) $J_a > K$ (d) $J_a \ge K$ 5 At low pressure, the value of PV for any gas is a linear function of its..... (a) temperature (b) pressure (c) density (d) Both a & c Isopiestic solutions are such in which... 6 (a) solute is having same activity (b) solvent is having same activity (c) solute is having same activity co efficient (d) solvent is having same activity co efficient At infinite dilution, the activity of ions becomes equal to its

		another for (a) real gas	
		(b) ideal gas	
		(c) both real and ideal gas	
		(d) none of these	
Q-2		Answer the following. (Any seven)	14
	1	Define: (i) System (ii) Intensive properties.	
	2	What is apparent molar property? Derive the expression for the same.	
	3	Derive the expression for Direct method for partial molar property.	
	4	What are tests of reversibility?	
	5	Give the confirmation of 3 rd law of thermodynamics.	
	6	What is fugacity? How will you obtain the equation for relative fugacity.	
	7	Explain positive deviation from ideal solution.	
	8	Derive the equation dF = RT dln F	•
	9	State ideal form of Henry's law.	
Q.3	A	Explain the term fugacity and fugacity co-efficient. Describe the	06
		Graphical method for determination of fugacity.	
	В	Discuss the Lewis Randall rule for determination of fugacity of a gas	06
		in gaseous mixture.	
,		OR	
	В	How one can calculate fugacity of solids and liquids? The vapour	06
		pressure of liquid chlorine is 3.66atm at 0°c and the molar volume of	t
		the vapour under these conditions is 60.1 lit /mole. Evaluate the	
		fugacity of liquid chlorine at 0°c. Give your comments.	
Q.4	Α	Write Van't Hoff equation and integrate this equation without limits	06
		of integration.	
	В	What is Metathesis? Derive the equation for equilibrium constant	06
		for such a reaction.	
		OR	
	В	Derive the equilibrium constant for homogeneous reaction in dilute	06
		solutions.	
Q.5	Α	Derive the Duhem- Margulas equation. Explain its use in	06
*		understanding the positive and negative deviations of binary	
		solutions from ideal behaviour.	
	В		
	1	1 molal aqueous solution of mannitol has vapour pressure of 17.22	03
	÷	mm. of mercury at 20°c. At the same temperature the vapour	
		pressure of pure water is 17.53mm. of mercury. Calculate the	
	_	activity and activity co efficient of water in given solution.	_
	2	Determine the mean ionic activity of 0.5 molal solution of sodium	03
		sulphate.	
	В	OR When liquid components of an ideal solutions are mixed. AV and	.00
	D	When liquid components of an ideal solutions are mixed, ΔV and	: 06

 ΔH_{mix} are always zero. Justify.

The fugacity and pressure are in general, not proportional to one

8

- Q.6 A Discuss relationship between apparent molar property and partial molar property for infinite dilute solution.
 B Derive the following equation \(\overline{V} = \frac{M_2}{M_2} \)
 - **B** Derive the following equation, $\overline{V_2} = \frac{M_2}{1000(\rho C\frac{d\rho}{dc})}$

B Using the expression for V as a function of m for aqueous NaCl at 25° C: V= 1002.94 + 16.40m + 2.140 m^{3/2} + 0.027m^{5/2}.

Find V_{NaCl} & V_{H2O} in a 1 molal solution.

 $(V_1 = 18.06 \text{ml/mole}, \text{molecular mass of water} = 18.02 \text{ gm/mole})$

06