No. of Printed Pages: 02

. (8,6)

Sardar Patel University

M.Sc. (Materials Science) I' Semester Examination

Thursday, Date: 29/11/2012

Time: 10:30 am to 1:30 pm

Subject: PS01CMTS01 Basic Concepts in Materials Science

Total Marks: 70

Note: Figures on the right indicate marks for the question,

Q-1 Multiple Choice Questions. [8]						
(1) The Cv value of most of solids at high temperature approaches a constant value of 25 x 10 ³ kMol ⁻¹ K ⁻¹ , which is known as value.	J					
(a) Boltzmann constant (b) Dulong-Petit (c) Medugal-petit (d) None						
(2) Tensile strength of steel is closely related with BHN Brinell hardness number.						
(a) 100 (b) 350 (c) 500 (d) None						
(3) is the formula for three point bend strength? (a) $\sigma = E \epsilon$ (b) $\sigma = 3FL/2wh^2$ (c) $\sigma = F/A$ (d) $\sigma = 2FL/3wh^2$						
(4) Which of the following tests can help to know the brittle to ductile transition temperature	e					
(DBTT)?						
(a) Creep test (b) Fatigue Test (c) Impact test (d) Tensile Test						
(5) Which of the following is extensive property?						
(a) Magnetic Intensity (b) Density (c) Surface Tension (d) None						
(6) step of the typical creep curve is creep rate determining step?						
(a) Second (b) First (c) Third (d) None of these						
(7) Thermal conductivity of metals isthan ceramics?						
(a) greater (b) equal (c) less (d) none of these						
(8) What is the relationship between thermal conductivity and electrical conductivity?						
(a) $k/\sigma T = L_{r_0}$ (b) $Q/A=k$. $\Delta T/\Delta X$ (c) $\alpha=k/\rho c_p$ (d) None of these						
Q-2 Answer any Seven of the following. [14]						
(1) A thermal engineer develops an engine, working between 427°C and 37°C and claims to have an	J					
efficiency of 52%. Does he claim correctly?						
(2) Explain the heat of transformation or enthalpy and justify the statement, "the heat of sublimation	,					
at triple point is equal to the heat of vaporization and heat of fusion".						
(3) Explain the terms for thermodynamic system: i) Energy states ii) Energy levels iii) Macrostates iv) Microstates						
(4) Explain the basic thermodynamic processes by P-V curve.						

1 of 2

(5) Give the schematic illustration of four types of deformations occur in engineering mate(6) Differentiate between engineering stress-strain and true stress-strain.	erials.					
(7) Define the terms: i) Tensile Toughness, ii) Stiffness iii) Ductility iv) Poison's Ratio						
(8) Calculate the work done under external magnetic field and work due to surface tension.						
(9) Discuss various types of strain response to applied stress in different types of materials						
(5)						
4.1-1 - 1 -1	[6]					
Q-3 [b] Derive the general form of the first law of thermodynamics for variable kinetic an						
potential energy of any given system.	[6]					
(OR)						
Q-3 [b] A Carnot's engine whose low temperature reservoir is at 17°C has efficiency of 4	5%.					
It is desired to increase the efficiency to 75%. By how many degrees should temperature						
of the high temperature reservoir be increased?	[6]					
Q-4 [a] Derive the expression for Bose-Einstein distribution function in which particles at	æ					
	[6]					
Q-4 [b] Derive an expression of Maxwell-Boltzmann distribution function in which the pa	articles					
	[6]					
(OR)						
Q-4 [b] Derive an expression for Fermi-Dirac distribution function in which the particles	arc					
indistinguishable and obey the Pauli's exclusion principle.	[6]					
'						
Q-5 [a] Describe the types of Impact Testing with their sample preparation.	[6]					
Q-5 [b] What is hardness? Mention various hardness scales, Describe the indentors and	• •					
loads for bulk hardness and microhardness measurment.	[6]					
· (OR)						
Q-5 [b] What is fatigue? How it can be measured? Which information can be obtained from	m					
fatigue testing?	[6]					
Q-6 [a] What is Coefficient of thermal expansion? Which precautions are to be taken						
when calculating the dimensional changes?	[6]					
Q-6 [b] What is thermal conductivity? Discuss the effect of temperature on the thermal						
conductivity of ceramics and metals.	[6]					
(OR)						
Q-6 [b] The flexural strength of glass fiber-epoxy composite is 250MPa, the specimen is 150mm long, 8mm thick and width is 12mm. The specimen is supported between	L					
two points 100mm. Find out the force require to fracture the material.	[6].					

2 of 2