SEAT No.

110

[52 FA-22] No. of Printed/Pages : 2 SARDAR PATEL UNIVERSITY 6thSemesterB.Sc. EXAMINATION (Under CBCS) Monday, 02nd April 2018 Time 10:00 am to 1:00 pm Subject Code: PHYSICS [USO6CPHY04] (Electrodynamics and Plasma physics) N.B: (i) All the symbols have their usual meanings. $\mathbb{N}^{\mathbb{N}}$ (ii) Figures at the right side of questions indicate full marks. Choose the correct option for the following questions. Q-1 [10] The resultant field inside the conductor is _ (1) (a) one (b) infinite (c) zero (d) none of above When a sample is placed in a region of non-uniform magnetic field, the (2)diamagnet is _____ (a) repelled (b) attract (c) steady (d) none The current density J is proportional to the _____ per unit charge. (3) (a) pressure (b)force (c) work (d) energy (4) Conductivity decreases with increasing _ (a) force (b) work (c) energy (d) temperature (5) A changing magnetic field induces _____ field. (a) electric (b) magnetic (c) electromagnetic (d) none (6) The magnetic flux through the Larmor orbit is_____. (a) decreases (b) increases (c) constant (d) none Magnetic moment of the gyrating particle is ___ (7) (a) $\mu = \frac{\frac{1}{2}mv_{\perp^2}}{B}$ (b) $\mu = \frac{mv_{\perp^2}}{B}$ (c) $\mu = \frac{-\frac{1}{2}mv_{\perp^2}}{B}$ (d) none of these The Magnetic moment is invariant in slowly varying (8) (a) electric magnetic (b) magnetic (c) electric (d) gravitational $\begin{array}{ll} {\rm P}=C_p r, \, {\rm where} \, \gamma = \underline{\hspace{1cm}} \\ {\rm (a)} \, \frac{c_p}{c_v} \quad {\rm (b)} \, \frac{c_v}{c_p} \quad {\rm (c)} \, c_p, c_v \qquad {\rm (d)} \, c_p + c_v \end{array}$ (9) (10)In particular, ω does not depend on K, so the group velocity $\frac{d\omega}{dk}$ is (a) zero (b) greater than zero (c) less than zero (d) none Answer any ten questions in brief. [20] (1) Show that total work done to go from q=0 to q=Q is $w=\frac{1}{2}cv^2$. Explain: Dielectric. (2) (3) Give boundary conditions for electric displacement. Define: Electromotive force. (4) (5) Deduce: Faraday's Law. (PTO)

	(6) (7)	Write four equations of electrodynamics before Maxwell's. Write three conditions that an ionized gas must satisfy to be called	
	177	plasma.	
	(8)	Explain: Loss cone.	
	(9)	What is drift instability?	
	(10)	Define: Plasma frequency.	
	(11)	Explain: ion acoustic waves.	
	(12)	Which phenomenon is called "Langmuir's paradox"?	
- ₹ 1 _{2.4}			
Q-3	(A)	What happens to a neutral atom when it placed in an electric field E?	[04]
	(B)	Give interpretation of bound changes and show that	[06]
		(i) If polarization is uniform $\sigma_b = \hat{p}$. \hat{n} and	
		(ii) If polarization is non-uniform $ ho_b$ =- $ec{ textsf{V}}$, $ec{ textit{p}}$	
		OR	
Q-3	(A)	Solve Laplace's equation using the method of separation of variable with spherical polar co-ordinates.	[06]
	(B)	Give the solution of Laplace's equation in three dimensions and show	[04]
		that if a single point charge q is located outside the sphere	
		$V_{arc} = V_{centre}$	
Q-4	(A)	Calculate the torque and force on a rectangular current loop in an	[10]
	V-7	uniform field B.	[10]
		OR	
Q-4	(A)	Explain bound currents and give physical interpretation of bound	[10]
		currents.	[-0]
Q-5	(A)	What is Maxwellian velocity distribution? Deduce \vec{E}_{av} in one and three dimension.	[06]
	(B)	Write and explain Saha equation.	[04]
		The and explain sails equation.	[04]
	•	OR	
Q-5	(A)	Derive expression for polarization drift based on concept of time	[05]
	•	varying field.	
	(B)	Prove that the magnetic flux through a Larmor orbit is constant in time-	[05]
		varying B field.	
Q-6	(A)	Derive equation of,(i) continuity and (ii) state	(oc)
	(B)	Compare ordinary fluids with ordinary hydrodynamics.	[06]
	(-)	OR	[04]
Q-6	(A)	For an lon waves derive the velocity of sound in plasma.	Incl
	(B)	Obtain an expression for the velocity C_s of sound waves in neutral gas.	[06] [04]
			[47]