(31A & A-26) Seat No.:____

No of printed pages: 3

SARDAR PATEL UNIVERSITY B.Sc.(SEMESTER - VI) EXAMINATION - 2017

Tuesday, 28th March, 2017
MATHEMATICS: US06CMTH02
(COMPLEX ANALYSIS)

$\Gamma \mathrm{ime}: 10:00 \ \mathrm{a.m}$. to 1:00 p.m.
---	----------------

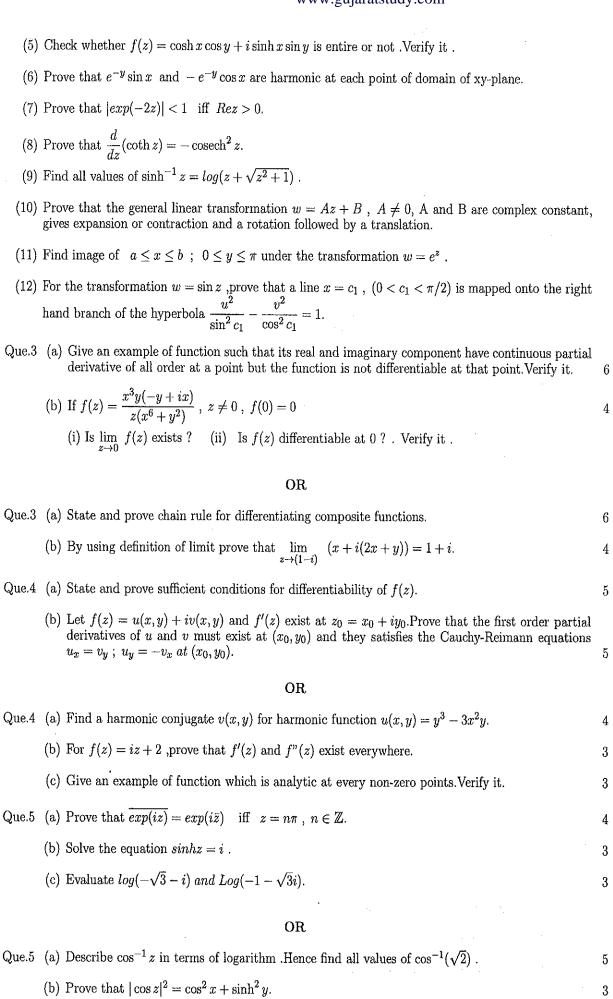
Maximum Marks: 70

10

Que.1 Fill in the blanks.

(1) $f(z) = (x^2 - y^2 - 2y) + i(2x - 2xy)$ can be expressed as $f(z) = \dots$

- (a) $\bar{z}^2 + 2z$ (b) $\bar{z}^2 + 2iz$ (c) $\bar{z}^2 2iz$ (d) $\bar{z}^2 + iz$
- (2) $\lim_{z \to 0} \frac{z}{\bar{z}} = \dots$
 - (a) -1 (b) 0 (c) 1 (d) does not exist
- (3) $f(z) = \frac{2z}{z(z^2 + 1)}$ is analytic in
 - (a) $\mathbb{C} \{\pm i\}$ (b) $\{0, \pm i\}$ (c) $\mathbb{C} \{0\}$ (d) $\mathbb{C} \{0, \pm i\}$
- (4) If C-R equations are satisfied at z_0 then f(z) is at z_0 .
 - (a) need not be differentiable (b) not differentiable (c) differentiable (d) none of these.
- (5) $exp(2 \pm 3\pi i) = \dots$
 - (a) e^{-2} (b) e^{2} (c) $-e^{2}$ (d) $-e^{2}$
- (6) $e^{z_1} = e^{-z_2}$ then $z_1 = \dots$
 - (a) $-z_2 + 2n\pi i$ (b) $z_2 + 2n\pi$ (c) $-z_2$ (d) z_2
- $(7) \ cosiy = \dots$
 - (a) icoshy (b) coshy (c) -coshy (d) icosy
- (8) The image of line $x=c_1$, $c_1\neq 0$ under the transformation w=1/z is
 - (a) circle (b) square (c) rectangle (d) hyperbola
- (9) Fixed point of $w = \frac{6z-9}{z}$ is
 - (a) 0 (b) i (c) 2 (d) 3
- (10) Image of x < 0 under the transformation w = (1+i)z is
 - (a) u < v (b) v < u (c) u < -v (d) u > -v


Que.2 Answer the following (Any Ten)

- (1) Prove that limit of function is unique, if it exist.
- (2) By using definition prove that $\lim_{z\to z_0} (z^2+c) = z_0^2+c$, where c is complex constant.
- (3) If f and g are differentiable then prove that fg is differentiable.
- (4) Prove that $f(z) = e^{ix+y}$ is nowhere analytic.

20

www.gujaratstudy.com

(c) Prove that $|\sinh x| \le |\cosh z| \le \cosh x$.

3

2

- Que.6 (a) Prove that all linear fractional transformation that maps the upper half plane $Im\ z>0$ on to the open disk |w|<1 and the boundary $Im\ z=0$ on to the boundary of |w|=1 is given by $w=e^{i\alpha}\left[\frac{z-z_0}{z-\overline{z_0}}\right]$, $Im\ z_0>0$. Also prove the converse.
 - (b) Find linear fractional transformation that maps the points $z_1=2$, $z_2=i$, $z_3=-2$ on to $w_1=1$, $w_2=i$, $w_3=-1$ respectively.

OR

- Que.6 (a) Discuss the image of w=(i+1)z+2 . Hence sketch the rectangle $1\leq x\leq 2$, $1\leq y\leq 4$ and its image.
 - (b) Find the image of semi infinite strip x>0 , 0< y<1 under the transformation w=i/z . Also sketch the strip and its image.
