SARDAR PATEL UNIVERSITY BSc (V Sem.) Examination Friday, 22 November 2013 10.30 am – 1.30 pm US05CMTH05 – Mathematics Number Theory

Total Marks: 70

Note: Cierres to the right indicates full montes				NS. 10	
note:	Figures to the right indicates	s full marks.			
Q.1	options.	electing the co	prrect choice from the given	[10]	
(1)	(4676, 366) =		:		
	$(4676, 366) = {(b) 2}$	(c) 1	(d) 4		
(2)	[12, 30] =				
	(a) 60 (b) 30	(c) 6	(d) 360		
(3)					
	(a) Even	(b) U			
	(c) Odd	(d) Prime	es. · ·		
(4)	Fermat Number F ₃ = (a) 3 (b) 13	*	100 mg		
	(a) 3 (b) 13	(c) 65537	(d) 257		
(5)	T(810) =				
	(a) 41 (b) 20	(c) 38	(d) 28		
(6)	$T(810) = \underline{\qquad}$ (a) 41 (b) 20 $ax+by=c \text{ has integer solution}$	on if and only i	f		
	(a) $(a, b) = a$	(b) $(a, b) = b$			
	(a) (a, b) = a (c) $\frac{(a,b)}{c}$	(d) $c/(a,b)$			
(7)	$(x, y, z) = $ is one of the relative prime solution of $x^2 + y^2 = z^2$ with $0 < z < 30$.				
	(a) (5, 12, 13) (c) (2, 5, 7)	(b) (20, 21, 2	29)		
	(c) (2, 5, 7)	(d) (5, 13, 17	') ·		
(8)	$ca = cb \pmod{n} \Rightarrow a = b \pmod{n}$ only if				
	(c) $(c, a) = 1$	(b) (c, a) = b (d) (c, n) = 1			
(9)	Reduced residue system modulo m contains elements. (a) m (b) $\phi(m-1)$ (c) $\phi(m)$ (d) $\phi(m+1)$				
	(a) m (b) $\phi(m-1)$	(c) $\phi(m)$	(d) $\phi(m+1)$		
(10)	$\phi(1008) =$				
	(a) 288 (b) 1007	(c) 144	(d) 126		
Q.2	Answer the following in short. (Attempt Any Ten)			[20]	
(1)	Prove that $[a,b,c] = \frac{abc}{(ab,bc,ca)}, \forall a,b,c>0$.				
(2)	Find g.c.d of two numbers by using Euclidean algorithm.				
(3)	Prove that $(a+b)[a,b]=b[a,a+b], \forall a,b>0$.				
(4)	If 'a' is not square number but odd integer then prove that				
(' /	S(a) is even integer.		misgo, mon ploto mat		
(5)					

- (6) If x is any real number and n is a positive integer then prove
- (7) If $a_1 \equiv b_1 \pmod{n}$ & $a_2 \equiv b_2 \pmod{n}$ then prove that $a_1 a_2 \equiv b_1 b_2 \pmod{n}$.
- (8) If $a_1 = b_1 \pmod{n}$ then prove that $a''' \equiv b_1''' \pmod{n}$, $\forall m \in N$ by using mathematical induction method.
- K=[m,n](9) If $a = b \pmod{m}$, $a = b \pmod{n}$ and then prove that $a = b \pmod{K}$
- (10) Is {27, 80, 96, 113, 64} a C. R. S. modulo 5? Justify.
- (11) If $a^{m-1} \equiv 1 \pmod{m}$, $(a,m)=1 \& a^n \not\equiv 1 \pmod{m}$ for any proper divisor n of m-1 then prove that m is prime.
- Prove that $\phi(p^{\kappa}) = p^{\kappa} \left(1 \frac{1}{p}\right)$ where p is prime.

Q.3

- State and prove Fundamental theorem of divisibility. [05] (a) [05]
- Prove that $(a^{m-1}, a^{n-1}) = a^{(m,n)} 1$. (b)

OR

Q.3

- State and prove Unique Factorization Theorem. (a) [05]
- Let g be a positive integer greater than 1 then prove that every [05] (b) positive integer 'a' can be written uniquely in the form $a = c_n g^n + c_{n-1} g^{n-1} + ... + c_1 g + c_0$ where $n \ge 0$, $ci \in \mathbb{Z}, 0 \le ci < g, c_n \ne 0$.

Q.4

- Prove that odd prime factor of M_p (p>2) has the form 2pt+1 for some (a) [05]
- If a & b are relatively prime number then prove that (b) [05]
 - (i) $T(ab) = T(a) \cdot T(b)$
 - (ii) $S(ab) = S(a) \cdot S(b)$
 - (iii) $P(ab) = P(a)^{T(b)} \cdot P(b)^{T(a)}$

OR

Q.4

- (a) Prove that $S(a) < a\sqrt{a}, \forall a > 2$. [05]
- (b) [05] Prove that odd prime factor of $a^{2^n} + (a > 1)$ is of the form $2^{n+1} + 1$ for some $t \in \mathbb{Z}$.

Q.5

- Prove that the integer solution of $x^2+2y^2+=z^2$; (x,y)=1 can be [05] (a)
- expressed as $x = \pm (a^2 2b^2)$; y = 2ab; $z = a^2 + 2b^2$.
- Solve the equation: 7x+19y=213. (b) [05]

Q.5

- (a) Prove that the general integer solution of $x^2+y^2=z^2$ with x, y, z > 0; [05] (x, y) = 1 and y is even is given by $x = a^2 b^2$; y = 2ab; $z = a^2 + b^2$ where a, b > 0; (a, b) = 1 and one of a, b is odd and the other is even.
- (b) State and prove necessary and sufficient condition that a positive [05] integer is divisible by 11. Is 527590 divisible by 11?
- Q.6 Show that Euler's function is multiplicative and hence [10] find φ (142296).

OR

Q.6 State and prove Chinese Remainder theorem and hence solve the [10] system of congruences: $x \equiv 2 \pmod{3}$; $x \equiv 3 \pmod{5}$; $x \equiv 2 \pmod{7}$.

* * *