No. of Printed Pages: 03 Sardar Patel University

[43/A-17]

Vallabh Vidyanagar - 388120

BSc [Semester-V]

Subject Physics Course Code No: US05CPHY05

CBCS (Regular and NC All)

Subject: Physics

Title of the Paper: Analog Devices and Circuits

Wednesday, Date 15-11-2017 Time: 10.00 am to 01.00 pm

Total Marks-70

Multiple Choice Questions: [Attempt all] Q-1

- A JFET has I_{DSS} = 10 mA and V_P = 4 V, then $V_{GS (off)}$ = _ (1)
 - (a) 4 V
- (b) -4 V
- (c) 40 V
- A JFET has I_{DSS} = 10 mA and V_P = 4 V, then R_{DS} = (2)
 - (a) 400Ω
- (b) 500Ω
- (c) 600Ω
- (d) 700 Ω

(3)

This circuit diagram shows ______of FET.

- (a) Gate bias
- (b) voltage divider bias
- (c) Two supply source bias
- (d) Self bias
- (4)The correct sentence is
 - (a) For CE configuration, he is always negative and hie is always positive.
 - (b) For CE configuration, hie is always negative and hie is always positive.
 - (c) For CE configuration, hie and hie both are always positive.
 - (d) For CE configuration, hie and hie both are always negative.
- The lower cut off frequency of the CE transistor amplifier (f1) will be the (5) highest if we select $C_e = \mu F$.
 - (a) 10
- (b)
- (c) 30
- (d) 40
- If $r_{bb}\!=\!800~\Omega$ and $r_{b'e}\!=\!200~\Omega$ then according to hybrid $\pi\text{-model}$ to study (6)the high frequency response of CE amplifier $h_{ie}\text{=---}\Omega$
 - (a) 700
- (c) 900
- 1000

(7)

This is an example of the output swing for a _____ push pull

amplifier.

- Class A (a)
- (b) Class B
- (c) Class C
- (d) Class AB

(8)	In push pull power amplifiers, the output signal varies for a full 360° of the cycle.
	(a) Class A (b) Class B (c) Class C (d) Class AB
(9)	For the ideal inverting amplifier using OpAmp given that R_i =2K Ω and R_i =20K Ω . Voltage gain of the OpAmp is
in sett or My. r	(a) 10 (b) -10 (c) 11 (d) -11
(10)	For the ideal non-inverting amplifier using OpAmp given that R_1 =2 $K\Omega$ and R_1 =20 $K\Omega$. Voltage gain of the OpAmp is
	(a) 10 (b) -10 (c) 11 (d) -11
Q-2	Answer any TEN questions in short.
(1)	Draw schematic symbols of (i) n-channel JFET and (ii) p-channel
	JFET.
(2)	Compare construction of the depletion-mode MOSFET and the
	enhancement-mode MOSFET.
(3)	What are the advantages of JFET compared to a BJT?
(4)	What are the factors on which high frequency response of transistor
	amplifier depend?
(5)	What is the difference between ordinary amplifier and tuned amplifier?
	Discuss classification of small signal tuned amplifier.
(6)	Discuss the effect of an emitter bypass capacitor on low frequency
	response of transistor amplifier.
(7)	What is the main drawback of class B amplifier? How it is going to
	overcome using class AB push pull amplifier?
(8)	Define conversion efficiency of an amplifier. What is the maximum
	conversion efficiency of class B push pull amplifier?
(9)	What is complementary symmetry?
(10)	Why an Op-amp is called as operational amplifier? Draw the
nagara Ang as	schematic symbol for Op-amp.
(11)	Calculate the output voltage of an OpAmp inverting adder for the
	following sets of input voltages and resistors. In all cases R_f = 500 k Ω
	V_1 =3 V , V_2 = 1 V , R_1 = 250 $k\Omega$ and R_2 = 500 $k\Omega$.
(12)	Draw the diagram of integrator and differentiator using OpAmp.

Q-3 (a) Draw and discuss the drain curves and transconductance 7 curves of JFET. (b) Define transconductance of FET. Calculate transconductance of 3 the FET in the following cases: (i) If i_d = 0.2 mA pp when v_{gs} = 0.1 V pp and (ii) If $i_d = 1$ mA pp when $v_{gs} = 0.1$ V pp. Comment on the result. OR (a) Discuss two types of JFET analog switch. (b) Draw the circuit diagram of current-source biasing of JFET and describe it. (a) Derive the following amplifier equations: 7 (1) Current gain $A_i = \frac{-h_f}{1 + h_0 R_L}$ (2) Input resistance $R_i = h_i + h_r A_i R_L$ (3) Voltage gain $A_i = \frac{A_i R_L}{R_i}$. (b) Discuss effect of coupling capacitor on low-frequency response 3 of CE transistor amplifier. OR Q-4 (a) Discuss high frequency response of CE transistor amplifier. 7 Draw diagram, which shows (i) α cut of frequency (ii) β cut off frequency and (iii) gain bandwidth product (fr). (b) List four h-parameters. Define and explain any one. 3 (a) Write a note on harmonic distortion. How even harmonics is 7 Q-5 eliminated using Class A push-pull circuit, derive the (b) What is the importance of transistor phase inverter? Draw the circuit 3 diagram and describe it. OR (a) Explain the classification of push pull power amplifiers based 7 Q-5 on class of operation and compare them. (b) List the criteria for designing power amplifier. 3 Q-6 Drawing AC equivalent circuit of differential amplifier and 10 hence derive expressions for gain of the amplifier in difference and common mode configurations. Define and explain the following Op-Amp parameters and 10 Q-6 describe universal balancing techniques to determine such parameters: (i) Input offset voltage (ii) PSRR and (iii) Input bias current.