No. of Printed Pages: 2 SEAT No.___ SARDAR PATEL UNIVERSITY B.Sc. (IT) - IV SEMESTER (CBCS) US04CINT01: Computer Organization and Digital Computer Electronics Max Marks: 70 Time: 2:00 PM to 5:00 PM Date: 10/04/2017 Write answers of following Multiple Choice Questions: [10] Q:1 The base of Octal Number System is _ [01] (B) 8 (A) 10 (D) (C) CPU stands for _ [02]Control Programming Unit Central Processing Unit (B) (A) Common Programming Unit Control Processing Unit (D) (C) $(562)_8 = (___)_2$ [03] 111100000 (B) 10101010 (A) 101110010 (D) 110110010 (C) ____ is responsible for fetching instruction from main memory and determining their type. (B) Control Unit Arithmetic Logic Unit **Program Counter** (D) (C) Registers The ______is a register, which points to the next instruction to be fetched for [05] execution. Control Register (B) Instruction Register (A) Memory Address Register (D) Program counter (C) Invert Gate has only _____ input and _____ output. One, Two (B) One, One (A) (D) Two, Two (C) Two: One The _____ gate has two or more input signals. All inputs must be same to get a [07] high output. NOR (B) NAND (A) (D) **XNOR** XOR (C) [08] A combinational circuit that performs the arithmetic addition of two bits is called Decoder (B) Encoder (A) Full Adder (D) Half Adder (C)

In K-Map, Pair eliminates _____ variable(s) and their complements. 2 (B) (A) (D) 4 3 (C) [10] A Multiplexer has _____ One Input and One Output One Input and Many Output (B) (A) Many Input and Many Output Many Input and One Output (D) (C)

Q:2	Answ	er the following short questions : Attempt Any Ten	[20]
	[01]	What is Hardware? Give examples.	
	[02]	Perform: $(735)_8 = (?)_2$	
	[03]	Perform: $(ACD)_{16} = (?)_2$	•
	[04]	What is Instruction Register?	
	[05]	What is Array Computers?	
	[06]	What is Instruction-Level Parallelism?	
	[07] [08]	Explain AND Gate. Explain NOR Gate.	
	[00]	Explain NOT Gate.	
•	[10]	What is Multiplexer?	
	[11]	What is Decoder?	
	[12]	What is Minterm?	•
Q:3	[A]	Draw a Block Diagram of Basic Organization of a Computer System. Explain its functional units.	[06]
	[B]	Perform the following conversions:	[04]
		1. $(4762)_{10} = ()_2$ 2. $(5432)_8 = ()_2$	
		<u>OR</u>	
Q:3	[C]	What is Number System? Explain Hexadecimal Number System in detail.	[06]
V	[D]	Perform the following conversions:	[04]
	127	1. $(1010)_2 + (1011)_2 = ()_2$	
		2. (1101) ₂ - (0110) ₂ = () ₂	
Q:4	[A]	Explain the internal organization of a typical Von Neumann Machine.	[06]
	[B]	Explain Hamming Code with example.	[04]
		<u>OR</u>	
Q:4	[C]	Explain Pipelining in detail.	[06]
Q. I		Explain Instruction Execution Cycle of a CPU.	[04]
	[D]	Explain first detion execution dyele of a di of	L . 1
Q:5	[A]	Explain De-Morgan's First and Second Theorem in detail.	[10]
		<u>OR</u>	
Q:5	[B]	Explain Half Adder and Full Adder in detail.	[10]
Č	• . •		
Q:6	[A]	Explain 8x1 Multiplexer in detail.	[06]
	[B]	Explain RS Flip Flop.	[04]
		<u>OR</u>	
Q:6	[C]	Explain Comparator in detail.	[06]
4.0	[D]	Simplify the following K-Map :	[04]
	[12]	$F(A, B, C, D) = \sum (0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 15)$	_
٠		—X—	-