No. Of Printed Pages: 2 Page - 1 ## SARDAR PATEL UNIVERSITY B.Sc. EXAMINATION - SEMESTER-4 MICROBIOLOGY - US04CMIC02 Applied Microbiology [23] [A47] Date: 7/04/2016 Day: Thursday Time: 10:30 am to 1:30 pm Total marks: 70 N.B: Figures on the right indicate marks. | | urization efficiency can be | chec | ked by test. | |--|---|--|---| | (a) | Caseinase | | Lactase | | (c) | Phosphatase | | Amylase | | , | dye undergoes series | of col | or changes during reduction test. | | (a) | Methylene blue | (b) | Basic fuchsin | | (c) | Melachite green | (\mathbf{d}) | Resazurin | | | | zation | n, milk is heated to | | (a) | 145°F for 30 minutes | | | | (C) | 1430F for 30 minutes | (d) | 161°F for 15 minutes | | | | d by | proteolytic microorganisms, the | | proces | ss is known as | (1.) | B | | (a) | Purification | | Pasteurization | | (C) | Putrefaction | (a) | None of these | | _ | H of the fruits restricts the | | | | (a) | Bacteria | | Fungi | | (C) | Plant | (d) | a & b both | | | gives Indole & Methyl | | | | (a) | Enterobacter aerogenes | (b) | Proteus vulgaris | | (C) | Escherichia coli | (d) | All of these | | | depth of the sea, microor | ganis | ms live at tremendous hydrostati | | In the | | | | | | ure up to atm | | | | pressi
(a) | 100 | (b) | 100000 | | pressi | 100
10 | (b)
(d) | 100000
1000 | | pressi
(a) | 100
10 | (b)
(d) | 100000
1000 | | pressi
(a)
(C)
area t | 100
10
is the simplest anaero
hat lack sewage system. | (b)
(d)
obic tr | t00000
1000
reatment used extensively in rura | | pressi
(a)
(C)
area t | 100 10 is the simplest anaero hat lack sewage system. Oxidation ponds | (b)
(d)
obic tr | t00000
1000
reatment used extensively in rura | | pressi
(a)
(C)
area t | 100
10
is the simplest anaero | (b)
(d)
obic tr | t00000
1000
reatment used extensively in rura | | pressi
(a)
(C)
area t
(a)
(C) | 100 10 is the simplest anaero hat lack sewage system. Oxidation ponds | (b)
(d)
obic tr
(b)
(d) | t00000
1000
reatment used extensively in rura
Activated sludge
Trickling filter | | pressi
(a)
(C)
area t
(a)
(C) | 100 10 is the simplest anaero hat lack sewage system. Oxidation ponds Septie tank | (b)
(d)
obic tr
(b)
(d) | t00000
1000
reatment used extensively in rura
Activated sludge
Trickling filter | | presso
(a)
(C)
area t
(a)
(C)
In dea
(a) | 100 10 is the simplest anaero hat lack sewage system. Oxidation ponds Septic tank amination reaction one of | (b)
(d)
obic tr
(b)
(d) | 100000 1000 reatment used extensively in rura Activated sludge Trickling filter nd product is always | | pressi
(a)
(C)
area t
(a)
(C)
In dea
(a)
(C)
The ke | 100 10 is the simplest anaerd hat lack sewage system. Oxidation ponds Septic tank amination reaction one of SO ₂ | (b)
(d)
objecting (b)
(d)
the er
(b)
(d) | 100000 1000 reatment used extensively in rura Activated sludge Trickling filter ad product is always NH ₃ PO ₂ | | pressi
(a)
(C)
area t
(a)
(C)
In dea
(a)
(C) | 100 10 is the simplest anaerd hat lack sewage system. Oxidation ponds Septic tank amination reaction one of SO ₂ NO ₂ | (b)
(d)
objecting (b)
(d)
the er
(b)
(d) | 100000 1000 reatment used extensively in rural Activated sludge Trickling filter ad product is always NH ₃ PO ₂ | | • | • | | |-----|---|--------------| | ase | - | (2) | | 7 | | \mathbf{c} | | Q.2 | Give short answers to the following questions. (02 - marks each) (Any Ten) | | | |------------------|--|------------------|--| | 1 | Define: Pasteurization | | | | 2 | Classify milk on the basis of decolourization in MBRT test. | | | | 3 | Enlist diseases of human origin that can be transmitted by milk. | | | | 4 | What are the advantages of sterilization as food preservation? | | | | 5 | Which is the most important organism to be eliminated in canned foods? Why? | | | | 6 | Write principles of food preservation. | | | | 7 | Draw a neat and labeled diagram of septic tank. | | | | 8 | Explain 'coliform' Give two names of coliform bacteria. | | | | 9 | Write the classes of natural waters. | | | | 10 | Explain : Rhizosphere. | | | | 11 | What is ammonification? Give one example with reaction. | | | | 12 | Explain CO ₂ fixation by bacteria with its reaction. | | | | Q.3 (a)
(b) | Write short note on butter. Describe microorganisms found in milk on the basis of temperature response. | 06
04 | | | | OR | | | | Q.3 (a)
(b) | Write short note on cheese. Write SPC method for microbial examination of milk. | 06
04 | | | Q.4 (a) | Write a note on microbial spoilage of food. | 06 | | | (p) | Explain Microscopic technique for the microbial examination of food. OR | 04 | | | Q.4 (a)
(b) | Write about use of high temperatures for food preservation. Write a note on dehydration for food preservation. | 06
04 | | | Q.5 (a)
(b) | Write a note on Marine Microbiology. Write on disinfection methods for water purification. | 05
05 | | | Q.5 (a)
(b) | Explain: Activated sludge process. Write a note on trickling filter. | 0 5
05 | | | Q.6 | Write an exhaustive note on microorganisms present in soil. OR | 10 | | | Q.6 | Describe in detail microbial interactions in soil | 10 | |