No. Of Printed Pages: 2 Page - 1

SARDAR PATEL UNIVERSITY B.Sc. EXAMINATION - SEMESTER-4 MICROBIOLOGY - US04CMIC02 Applied Microbiology

[23] [A47]

Date: 7/04/2016

Day: Thursday

Time: 10:30 am to 1:30 pm

Total marks: 70

N.B: Figures on the right indicate marks.

	urization efficiency can be	chec	ked by test.
(a)	Caseinase		Lactase
(c)	Phosphatase		Amylase
,	dye undergoes series	of col	or changes during reduction test.
(a)	Methylene blue	(b)	Basic fuchsin
(c)	Melachite green	(\mathbf{d})	Resazurin
		zation	n, milk is heated to
(a)	145°F for 30 minutes		
(C)	1430F for 30 minutes	(d)	161°F for 15 minutes
		d by	proteolytic microorganisms, the
proces	ss is known as	(1.)	B
(a)	Purification		Pasteurization
(C)	Putrefaction	(a)	None of these
_	H of the fruits restricts the		
(a)	Bacteria		Fungi
(C)	Plant	(d)	a & b both
	gives Indole & Methyl		
(a)	Enterobacter aerogenes	(b)	Proteus vulgaris
(C)	Escherichia coli	(d)	All of these
	depth of the sea, microor	ganis	ms live at tremendous hydrostati
In the			
	ure up to atm		
pressi (a)	100	(b)	100000
pressi	100 10	(b) (d)	100000 1000
pressi (a)	100 10	(b) (d)	100000 1000
pressi (a) (C) area t	100 10 is the simplest anaero hat lack sewage system.	(b) (d) obic tr	t00000 1000 reatment used extensively in rura
pressi (a) (C) area t	100 10 is the simplest anaero hat lack sewage system. Oxidation ponds	(b) (d) obic tr	t00000 1000 reatment used extensively in rura
pressi (a) (C) area t	100 10 is the simplest anaero	(b) (d) obic tr	t00000 1000 reatment used extensively in rura
pressi (a) (C) area t (a) (C)	100 10 is the simplest anaero hat lack sewage system. Oxidation ponds	(b) (d) obic tr (b) (d)	t00000 1000 reatment used extensively in rura Activated sludge Trickling filter
pressi (a) (C) area t (a) (C)	100 10 is the simplest anaero hat lack sewage system. Oxidation ponds Septie tank	(b) (d) obic tr (b) (d)	t00000 1000 reatment used extensively in rura Activated sludge Trickling filter
presso (a) (C) area t (a) (C) In dea (a)	100 10 is the simplest anaero hat lack sewage system. Oxidation ponds Septic tank amination reaction one of	(b) (d) obic tr (b) (d)	100000 1000 reatment used extensively in rura Activated sludge Trickling filter nd product is always
pressi (a) (C) area t (a) (C) In dea (a) (C) The ke	100 10 is the simplest anaerd hat lack sewage system. Oxidation ponds Septic tank amination reaction one of SO ₂	(b) (d) objecting (b) (d) the er (b) (d)	100000 1000 reatment used extensively in rura Activated sludge Trickling filter ad product is always NH ₃ PO ₂
pressi (a) (C) area t (a) (C) In dea (a) (C)	100 10 is the simplest anaerd hat lack sewage system. Oxidation ponds Septic tank amination reaction one of SO ₂ NO ₂	(b) (d) objecting (b) (d) the er (b) (d)	100000 1000 reatment used extensively in rural Activated sludge Trickling filter ad product is always NH ₃ PO ₂

•	•	
ase	-	(2)
7		\mathbf{c}

Q.2	Give short answers to the following questions. (02 - marks each) (Any Ten)		
1	Define: Pasteurization		
2	Classify milk on the basis of decolourization in MBRT test.		
3	Enlist diseases of human origin that can be transmitted by milk.		
4	What are the advantages of sterilization as food preservation?		
5	Which is the most important organism to be eliminated in canned foods? Why?		
6	Write principles of food preservation.		
7	Draw a neat and labeled diagram of septic tank.		
8	Explain 'coliform' Give two names of coliform bacteria.		
9	Write the classes of natural waters.		
10	Explain : Rhizosphere.		
11	What is ammonification? Give one example with reaction.		
12	Explain CO ₂ fixation by bacteria with its reaction.		
Q.3 (a) (b)	Write short note on butter. Describe microorganisms found in milk on the basis of temperature response.	06 04	
	OR		
Q.3 (a) (b)	Write short note on cheese. Write SPC method for microbial examination of milk.	06 04	
Q.4 (a)	Write a note on microbial spoilage of food.	06	
(p)	Explain Microscopic technique for the microbial examination of food. OR	04	
Q.4 (a) (b)	Write about use of high temperatures for food preservation. Write a note on dehydration for food preservation.	06 04	
Q.5 (a) (b)	Write a note on Marine Microbiology. Write on disinfection methods for water purification.	05 05	
Q.5 (a) (b)	Explain: Activated sludge process. Write a note on trickling filter.	0 5 05	
Q.6	Write an exhaustive note on microorganisms present in soil. OR	10	
Q.6	Describe in detail microbial interactions in soil	10	