www.gujaratstudy.com (53 A & A-58-Eng) seal No:____ Na. of Printed Pages: 3 **SARDAR PATEL UNIVERSITY** 28th March, 2017, Tuesday B.SG - SEM II, MATHEMATICS US02CMTH02 (Matrix Theory & Differential Equations) Time: 2 Hours - 2 pm To 4 PM **Total Marks: 70** 1. Answer the following by selecting correct choice from the options: [10] (1) A matrix $\begin{bmatrix} 7 & 0 \\ 0 & 5 \end{bmatrix}$ is _____ matrix. (a) Scalar (b) Identity (c) Diagonal (d) None (2) If A and B are symmetric matrices, then (a) AB is symmetric (b) BA is symmetric (c) AB+BA is symmetric (d) AB is skew symmetric (3) Characteristic roots of a skew Hermitian matrix are (a) Real (b) Pure imaginary (c) Zero (d) Zero or Pure imaginary (4) If 3 is characteristic root of matrix A then _____ (a) |I + 3A| = 0(b) |I - 3A| = 0(c) |A + 3I| = 0(d) |A-3I|=0(5) A square matrix A is said to be an orthogonal matrix if $(a) AA^{-1} = I$ (b) $A = A^T$ (c) $AA^T = I$ (d) $AA^{\theta} = I$ (6) $\frac{1}{(n-1)^3}e^x =$ (a) $\frac{x^3}{3!}e^x$ (b) $\frac{x^2}{3!}e^x$ (d) $\frac{x^2}{3}e^x$ (c) $\frac{x^3}{2}e^x$

(7) The complementary function(C.F.) of $(D+3)^2y = sinx$ is _____

(a) $c_1 + c_2 e^{3x}$

(c) $(c_1 + c_2 x)e^{-3x}$

(b) $(c_1 + c_2 x)e^{3x}$

(d) $(c_1x + c_2x^2)e^{-3x}$

(8)	The particular integral (P.I) of $(D^2 + 4)y = cos2x$ is	
-----	--	--

(a) $\frac{x}{8}cos2x$

(b) $\frac{x}{4}sin2x$

(c) $\frac{x}{2}\cos 2x$

(d) $-\frac{x}{4}sin2x$

(9)
$$\frac{1}{p^2}x^2 =$$

(a) $\frac{x^3}{3!}$

(b) $\frac{x^2}{12}$

(c) $\frac{x^4}{12}$

(d) $\frac{x^4}{3}$

(10) The solution of differential equation
$$(D^2 + 9)y = 0$$
 is _____

(a) $c_1 cos3x + c_2 sin9x$

(b) $c_1 cos3x + c_2 cos9x$

(c) $c_1 cos3x + c_2 sin3x$

(d) $e^{3x}(c_1\cos 3x + c_2\sin 3x)$

2. Answer any TEN of the following.

[20]

- 1) Define : (i) Scalar Matrix
- (ii) Diagonal Matrix
- 2) Define singular matrix with an illustration.
- 3) Is matrix multiplication commutative? Justify your answer.

4) If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 then find characteristic equation of A .

- 5) Define characteristic root and characteristic vector of Matrix.
- 6) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ then find characteristic root of A.
- 7) Find the value of $\frac{1}{D+1}(x^2+1)$
- 8) Find C.F. for the differential equation $(D^3 1)y = x^2$
- 9) Find the P.I. for the differential equation $(D^2 3D + 2)y = sin2x$
- 10) Solve the differential equation $(D^4 1)y = 0$
- 11) Find the P.I. for the differential equation $(D^2 6D + 5)y = e^{5x}$
- 12) Find C.F. for the differential equation $(D^2 + 9)y = \cos 3x$

3. (a) Prove that every square matrix can be expressed in one and only one way as the sum of a symmetric and skew symmetric matrix. [5]

(b) Prove that the product of matrices

$$A = \begin{bmatrix} \cos^2\theta & \cos\theta\sin\theta \\ \cos\theta\sin\theta & \sin^2\theta \end{bmatrix}, \ B = \begin{bmatrix} \cos^2\theta & \cos\theta\sin\theta \\ \cos\theta\sin\theta & \sin^2\theta \end{bmatrix} \text{ is zero when } \theta \text{ and } \theta \text{ differ by}$$
 an odd multiple of $\frac{\pi}{2}$

3. (a) State and prove reversal law for the transpose of a product of matrices.

(b) If
$$A_{\alpha} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
 then prove that $(A_{\alpha})^n = \begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix}$ where n is positive integer.

4. (a) State and prove Cayley-Hamilton theorem.

(b) Find the characteristic root and any one of the characteristic vector of the matrix

[5]

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

OR

4. (a) Prove that the modulus of characteristic root of a unitary matrix is unity. [5]

(b) Verify Cayley-Hamilton theorem for the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix}$$
 [5]

5. (a) In usual notations prove that
$$\frac{1}{f(D)}e^{mx} = \frac{1}{f(m)}e^{mx}$$
, $f(m) \neq 0$ [5]

(b) Solve the differential equation
$$(D^4 + D^3 + D^2 - D - 2)y = e^x + e^{-x}$$
 [5]

OF

5. (a) Solve the differential equation
$$(D^2 + a^2)y = secax$$
 where $a \in R$ [5]

(b) Solve the differential equation
$$(D^4 - 2D^2 + 1)y = e^{x/2}$$
 [5]

6. (a) In usual notations prove that
$$\frac{1}{\phi(D^2)} cosax = \frac{1}{\phi(-a^2)} cosax$$
 , $\phi(-a^2) \neq 0$ [5]

(b) Solve the differential equation
$$(D^2 - 5D + 6)y = \cos 2x$$
 [5]

OR

6. (a) In usual notations prove that
$$\frac{1}{f(D)}e^{ax}V=e^{ax}\frac{1}{f(D+a)}V$$
, where V is function x . [5]

(b) Solve the differential equation
$$(x^2D^2 + xD - 1)y = x^4$$
 [5]

