No. of printed pages : 3

SARDAR PATEL UNIVERSITY FY BSc (II SEM) (CBCS) EXAMINATION Thursday, 19th April 2012 11 am - 1 pm US02EMTH02 - Mathematics

Total Marks: 70

Note: Figures on the right indicate full marks of the questions.

Q.1 Choose the correct option for the following questions and write it down [10] in the Answer-book.
(1) {*x*∈*R*/*a*≤*x*≤*b*}=_____.

1

(a) [a, b] (b) [a, b) (c) (a, b) (d) (a, b] (2) N (1, 3) = _____. (a) (2, 4) (b) (4, 2) (a) (2, 4)(c) (-2, 4)(3) [6.8] =_____. (d) none of the these (b) 8 (a) 6 (c) 7 (d) 5 (4) $\int Kf(x)dx =$ _____. (b) $f(x) \int K dx$ (a) Kf(x)(c) $K \int f(x) dx$ (d) none of the these (5) $\int \sec x \tan x dx =$ _____. (a) tanx + c(c) $sec^2x + c$ (b) $\tan^2 x + c$ (d) secx + c(6) In $\int f(x) dx$, *a* is called _____. (b) lower limit (a) upper limit (c) limit (d) none of these (7) $\int 1 dx =$ _____. (b) 3 (a) 1 (c) 2 (d) 5 (8) $\int e^x dx =$ _____. (b) e⁻¹ (d) e¹ - e⁻¹ (a) e¹ $(c) e^{1-1}$ (9) Order of $\frac{d^2y}{dx^2} + 3y = 0$ is _____. (b) 2 (a) 3 (c) 1 (d) 0 (10) Degree of $\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^3 + xy = 0$ is _____. (a) 2 (b) 1 (c) 3 (d) 0

Q.2 Answer the following questions in short. (Attempt Any Ten) [20] Define: Neighbourhood. (1) (2) Find $\frac{d}{dx}(x\sin x)$. (3) State working rules of limit. Evaluate: $\int \left(x^{\frac{3}{2}} - 3.5^x - \frac{1}{x}\right) dx.$ (4) Evaluate: $\int xe^x dx$. (5) Evaluate: $\int \frac{1}{4x^2+9} dx$. (6) (7)State fundamental principle of definite integration. Obtain $\int_{0}^{1} (x+5) dx$. (8) (9) Evaluate: $\int_{0}^{\pi} \sin x \, dx$. (10)Define: Differential Equation. Verify that $y = e^x$, $x \in R$ is a solution of the differential equation $\frac{dy}{dx} = y$. (11)Obtain the order (12)and degree of the differential equation $\frac{d^2 y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}}.$ Q.3 (a) Evaluate $\lim_{x \to 1} \frac{x^6 - 1}{x^{15} - 1}, x \in R - \{1\}.$ [05] [05] (b) Evaluate $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$. OR Q.3 [05] (a) Find $\frac{dy}{dx}$ for $x^3 + y^3 = 3axy$. [05] (b) If $x = \cos^3 t$, $y = \sin^3 t$, then find $\frac{dy}{dx}$. Q.4 [05] (a) Evaluate $\int \frac{e^{2x}+1}{e^{2x}-1} dx$. [05] Evaluate $\int x \log x \, dx$. (b) OR Q.4 [05] (a) Evaluate $\int \frac{\cos x}{\cos x - 1} dx$. (b) Evaluate $\int x \sqrt{x+2} \, dx$, x > -2. [05]

www.gujaratstudy.com

Q.5
(a) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{4\sin^2 x + 5\cos^2 x}$$
. [05]

(b) Evaluate
$$\int_{-\pi/4}^{\pi/4} \cos^2 x \, dx$$
. [05]

OR

Q.5
(a) Evaluate
$$\int_{0}^{1} \frac{dx}{2e^{x}-1} dx$$
. [05]

(b) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin^2 \theta}{(1+\cos \theta)^2} d\theta.$$
 [05]

Q.6

- (a) Verify that $y = \sin x$, $x \in R$ is a solution of the differential equation [05] $\frac{d^2y}{dx^2} + y = 0.$
- (b) Obtain the differential equation representing all lines of family [05] y = mx + c. (m and c are arbitrary constants).

OR

- Q.6
 - (a) Verify that $y = ax + a^2$ (a is arbitrary constant) is the general solution of [05] the differential equation $\left(\frac{dy}{dx}\right)^2 + x\left(\frac{dy}{dx}\right) = y$.
 - (b) Obtain the differential equation of family of curves $y = a \sin (x + b)$, [05] a and b are arbitrary constants.
