SARDAR PATEL UNIVERSITY
 FY BSc (II SEM) (CBCS) EXAMINATION
 Thursday, $19^{\text {th }}$ April 2012
 11 am-1 pm
 US02EMTH02 - Mathematics

Total Marks: 70
Note: Figures on the right indicate full marks of the questions.
Q. 1 Choose the correct option for the following questions and write it down [10] in the Answer-book.
(1) $\{x \in R / a \leq x \leq b\}=$ \qquad .
(a) $[a, b]$
(b) $[a, b)$
(c) (a, b)
(d) $(a, b]$
(2) $N(1,3)=$ \qquad .
(a) $(2,4)$
(b) $(4,2)$
(c) $(-2,4)$
(d) none of the these
(3) $[6.8]=$ \qquad .
(a) 6
(b) 8
(c) 7
(d) 5
(4) $\int K f(x) d x=$ \qquad .
(a) $K f(x)$
(b) $f(x) \int K d x$
(c) $K \int f(x) d x$
(d) none of the these
(5) $\int \sec x \tan x d x=$ \qquad .
(a) $\tan x+c$
(b) $\tan ^{2} x+c$
(c) $\sec ^{2} x+c$
(d) $\sec x+c$
(6) $\ln \int_{a}^{b} f(x) d x, a$ is called \qquad
(a) upper limit
(b) lower limit
(c) limit
(d) none of these
(7) $\int_{2}^{3} 1 d x=$ \qquad .
(a) 1
(b) 3
(c) 2
(d) 5
(8) $\int_{-1}^{1} e^{x} d x=$ \qquad -.
(a) e^{1}
(b) e^{-1}
(c) e^{1-1}
(d) $e^{1}-e^{-1}$
(9) Order of $\frac{d^{2} y}{d x^{2}}+3 y=0$ is \qquad
(a) 3
(b) 2
(c) 1
(d) 0
(10) Degree of $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}+x y=0$ is \qquad .
(a) 2
(b) 1
(c) 3
(d) 0
Q. 2 Answer the following questions in short. (Attempt Any Ten)
(1) Define: Neighbourhood.
(2) Find $\frac{d}{d x}(x \sin x)$.
(3) State working rules of limit.
(4) Evaluate: $\int\left(x^{\frac{3}{2}}-3.5^{x}-\frac{1}{x}\right) d x$.
(5) Evaluate: $\int x e^{x} d x$.
(6) Evaluate: $\int \frac{1}{4 x^{2}+9} d x$.
(7) State fundamental principle of definite integration.
(8) Obtain $\int_{0}^{2}(x+5) d x$.
(9) Evaluate: $\int_{0}^{\pi} \sin x d x$.
(10) Define: Differential Equation.
(11) Verify that $\mathrm{y}=\mathrm{e}^{\mathrm{x}}, \mathrm{x} \in \mathrm{R}$ is a solution of the differential equation $\frac{d y}{d x}=y$.
(12) Obtain the order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}$.
Q. 3
(a) Evaluate $\lim _{x \rightarrow 1} \frac{x^{6}-1}{x^{15}-1}, x \in R-\{1\}$.
(b) Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.

OR
Q. 3
(a) Find $\frac{d y}{d x}$ for $x^{3}+y^{3}=3 a x y$.
(b) If $x=\cos ^{3} t, y=\sin ^{3} t$, then find $\frac{d y}{d x}$.
Q. 4
(a) Evaluate $\int \frac{e^{2 x}+1}{e^{2 x}-1} d x$.
(b) Evaluate $\int x \log x d x$.

OR
Q. 4
(a) Evaluate $\int \frac{\cos x}{\cos x-1} d x$.
(b) Evaluate $\int x \sqrt{x+2} d x, \quad x>-2$.
Q. 5
(a) Evaluate $\int_{0}^{\pi / 4} \frac{d x}{4 \sin ^{2} x+5 \cos ^{2} x}$.
(b) Evaluate $\int_{-\pi / 4}^{\pi / 4} \cos ^{2} x d x$.

OR

Q. 5

(a) Evaluate $\int_{0}^{1} \frac{d x}{2 e^{x}-1} d x$.
(b) Evaluate $\int_{0}^{\pi / 2} \frac{\sin ^{2} \theta}{(1+\cos \theta)^{2}} d \theta$.
Q. 6
(a) Verify that $y=\sin x, x \in R$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+y=0$.
(b) Obtain the differential equation representing all lines of family [05] $y=m x+c$. (m and c are arbitrary constants).

OR

Q. 6
(a) Verify that $\mathrm{y}=\mathrm{ax}+\mathrm{a}^{2}$ (a is arbitrary constant) is the general solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}+x\left(\frac{d y}{d x}\right)=y$.
(b) Obtain the differential equation of family of curves $y=a \sin (x+b)$, a and b are arbitrary constants.

