No. of printed pages: 3

SARDAR PATEL UNIVERSITY F.Y.B.Sc. (II SEM.) (CBCS) EXAMINATION 2011

Monday, 25th April 3.00 p.m. to 5.00 p.m. MATHEMATICS

US02CMTH01: ANALYTICAL SOLID GEOMETRY

Total Marks: 70

Q:1	Indicate your choice of correct answer for each sub-questions in	(10
	your answer-book by writing sub-question number and answer	
	with lattera.b.c.d whichever is appropriate.	

- (1) The centre of the sphere $x^2 + y^2 + z^2 + 2x + 2y 2z 6 = 0$ is a
 - (a) (-1,1,1)
- (b) (-1,-1,1)
- (c) (-1,-1,-1)
- (d) (1,1,-1)
- (2) The plane section of any sphere is
 - (a) points
- (b) line
- (c) circle
- (d) sphere
- (3) The radius of a sphere $x^2 + y^2 + z^2 2x 4y 4z = 7$, is
 - (a) √2

- (d) 4

(4) The equation
$$\frac{x^2}{9} - \frac{y^2}{4} - \frac{z^2}{25} = 1$$
 represents an

- (a) Elliptic hyperboloid of two sheets (b) Elliptic hyperboloid of (c) Elliptic cone (d) Elliptic paraboloid
- (5) The xz-trace of the surface $\frac{x^2}{\Omega} + \frac{y^2}{4} \frac{z^2}{25} = 1$ is
 - (a) Parabola
- (b)Hyperbola (c) Ellipse
- (d)Pair of lines
- (6) in a cylindrical polar co-ordinate system the equation z=2 represents a plane
 - (a) parallel to xy- plane (b)parallel to yz-plane
- (c)parallel to zx-plane (d)none of these
- (7) The vertex of a cone $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$ is
 - (a) (f,0,0)
- (b) (0,g,0)
- (c) (0,0,h)
- (d) none of these
- (8) The condition that a cone $ax^2 + by^2 + cz^2 + 2 fyz + 2 gzx + 2 hxy = 0$ admits a set of three mutually perpendicular generators is
- (a) ab+bc+ca=0 (b) ab+bc+ca=1 (c) a+b+c=0 (d) a+b+c=1
- (9) The vertex of reciprocal of a cone

 $ax^2 + by^2 + cz^2 + 2 fyz + 2 gzz + 2 hxy = 0$ is

- (a) (0,0,0) (b) (f,g,h) (c) (-f,-g,-h) (d) (-F,-G,-H)
- (10) Every plane sections of a right circular come by a plane perpendicular to its axis is
- (a) Hyperbola (b) Rectangle (c) Circle (d) Ellipse

Q:2 Do as directed

 $\{20\}$

- (1) Find the equation of a sphere with centre (2,-1,0) and passing through the point (1,-1,2).
- (2) By using definition of a sphere derive the equation of a sphere with centre (α, β, γ) and radius 'a'.

*(9) F	ind the condition that the cone cux tbyt cz estyz t egzxterocy=0 admits three mutuuly ansent plunes. Allied the equation of a tangent plane to a sphere	201
τ	ant કલ્પેનું ભાવાના (3)Find the equation of a tangent plane to a sphere	
	$x^2 + y^2 + z^2 + 2x + 4y - 6z - 24 = 0$ at a point (1,1,-2)	
	(4) By using standard form of quadric surface identify the surface given by $9x^2 - 4y^3 + 9z^2 = 0$.	
•	(5) Find Jaccobian for u=x+2y, v=3x+y.	
	(6) Plot the points $(2.7\pi/6,\pi/6)$, and $(3.40^{\circ},60^{\circ})$ in \mathbb{R}^3	
	(7) Find the equation of the cone with vertex at origin and direction	
	cosine of whose generators satisfy the condition $l^2 + m^2 - n^2 = 0$.	
	(8) Find the equation of the cone with vertex at origin and which passes through the three co-ordinate axes.	٠
*	(10) Find the equation of right circular cone with vertex at origin	
-	and axis of cone be z-axis.	
Q:3	(a) Two spheres given by $S_1 = x^2 + y^2 + z^2 + 2u_1x + 2v_2y + 2w_1z + d_1 = 0$	(6)
	and $S_2 = x^2 + y^2 + z^2 + 2u_2x + 2v_2y + 2w_2z + d_2 = 0$. Prove that	
	$S_1 + \lambda S_2 = 0$, where $\lambda \in \mathbb{R} - \{-1\}$, represents a family of spheres	
	passing through the intersection of $S_1 \equiv 0 \& S_2 \equiv 0$.	
	(b) Show that the spheres $x^2 + y^2 + z^2 = 64$ and	(4)
	$x^{2} + y^{2} + z^{2} - 12x + 4y - 6z + 48 = 0$ touches each othere.	
Q:3	(c)Find the equation of the sphere which passing through the	(5)
	circle $x^2 + y^2 + z^2 + 2x + 6y - 4z - 11 = 0$;	•
	$x^2 + y^2 + z^2 + 4x - 8y + 2z + 17 = 0$ and through the centre of	
	one of the spheres.	
	(d) Find the equation of a tangent planes to the sphere	(5)
	$x^{2} + y^{2} + z^{2} + 2x - 2y - 2z - 1 = 0$ which are parallel to the	•
	plane 2x-y+2z=0	
Q:4	(a) Identify and describe the surface given by	(5)
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,c>a,c>b.$	
	(b) Show that $Ax^2 + By^2 + Cz^2 = D$ represents an elliptic hyperboloid	(5)
	of one sheet if one of the coefficient is negative and D>0 OR	
Q:4	(c)Describe the surface given by (1) ρ =a, a is positive constant	(5)
	(2) $\theta = 0$, in spherical polar co-ordinate system.	
	(d) By using standard form of quadratic surface identify the surface $9x^2+4y^2-9z^2-18x-8y-18z=32$	(5)
Q;5	(a) Find the equation of a cone with vertex at (α, β, γ) and whose generators touches the sphere $x^2+y^2+z^2=a^2/(a\neq 0)$	(6)
	(b) Show that the cone whose vertex is at the origin and which	(4)

passes through the curve of intersection of the sphere $x^2 + y^2 + z^2 = 3a^2$, and any plane at a distance "a" form the origin Has mutually perpendicular generators.

ΩR

- Q:5 (c)The plane through OX and OY included an angle θ . Show that (5) Their line of intersection lies on the cone $z^2(x^2+y^2)=x^2y^2\tan^2\theta$
 - (d) Find the equation of the cone with vertex at Origin and which (5) Passes through the curve $x^2 + y^2 = 4$, z = 2.
- Q:6 (a) Find the equation of the reciprocal cone of the cone (5) 2yz+3zx+4xy=0
 - (b) Find the equation of the cylinder whose generator intersect the conic ax²+2hxy+by²+2gx+2fy+c=0,z=0.

and are parallel to $\frac{x}{1} = \frac{y}{m} = \frac{z}{n}$.

Λſ

- Q:6 (c) Find the condition that the line of intersection of the

 Plane |x+my+nz=0 and a cones | \alpha^2 + \alpha^2 + \alpha^2 = 0 \,

 fyz+gzx+hxy=0 should be coincident. | Cylinder
 - (d) Find the equation of the right circular whose (5)

, axis is $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ and

radius is v.

X=X=X