BCA (Sem-1) [NC] (2010 Batch)
US01EBCA01: Digital Computer Electronics - I
Time: 02.00 pm - 04.00 pm Date: 17-11-2017

Marks: 70

1	is way to simplify the equation.					
2	A. Boolean Algebra A+A'B+A'B'=?	B. K-MAP	С. ВОТН	D. NONE		
	A. 1	B. 0	C. A	D. A'		
3	In k-map, octets eliminates variable.					
	A. one	B. two	C. three	D. four		
4	The relationship between a function and its binary variables can be represented in					
	A. truth table	B. decoder		D. multiplexer		
5	A combinational circuit that performs the arithmetic addition of two bits is called					
			(C) Binary Adder	(D) Decoder		
6	A is a memory element that stores a binary digit.					
	A. binary adder	B. decoder	C. multiplexer	D. flip-flop		
7	In D flip-flop, when CLK is low then input is					
	A. high	B. low	C. Don't care	D. Not change		
8	A multiplexer also called a					
	A. data multiplier	B. data selector	C. data inverter	D. data remover		
9	The NOR gate has two or more input signals. If all inputs are, the output is high.					
	A. low	B. high				
10	7. In Comparator, gate is use for comparing bits in word.					
	A XOR	B AND	C NOR	D XNOR		
Ans	wer the following q	uestions. (ATTEM	IPT ANY TEN)		2	
1	Describe the NANI	O, NOR gate.	·			
2	Explain commutati	ve low.				
3	Draw the circuit for : $(A \oplus B)'(BC)(A \oplus C)$					

1

www.gujaratstudy.com

	5	Simplify using k-map $F(A,B,C)=E(1,2,5)$				
	6	Describe encoder in short.				
	7	Draw the circuit of half adder.				
	8	Describe binary adder in short.				
	9	Define: Flipflop, Register				
	10	Explain D flip-flop in short.				
	11	Define: shift register. What are the types of shift register?				
	12	Draw the circuit of Ring counter.				
	ř					
Q-3	A	Write note on: De'Morgan's first and	d second theorems.	10		
			OR			
Q-3	В	Explain AND, XOR, NAND gates.		10		
Q-4	A	Explain 3x8 line decoder in detail.		5		
	В	What is k-map? Explain octet with ex	ample.	5		
			OR			
Q-4	A	Explain SOP in detail.		5		
	В	Explain comparator with example.		5		
Q-5	A	Explain full adder in detail.		4		
	В	Explain 4x1 multiplexer		6		
			OR			
Q-5	A	Explain Half adder with an example.		4		
	В	Explain binary subtractor in detail.		6		
Q-6	A	Explain shift left register.		5		
	В	Explain ring counter in short.		5		
			OR			
Q-6	A	Explain shift-right register.		5		
	В	Explain controlled buffer register.		5		