(10)

Note : (1) Figures to the right indicate full marks.
(2) Log table and graph paper will be provided on request.

Q. 1

(a) Derive mathematical form of a general linear programming problem.
(b) Solve the following linear programming problem by using simplex method.

$$
\text { Maximise } \quad Z=3 X_{1}+2 X_{2}
$$

$$
\text { Subject to } 2 x_{1}+X_{2} \leq 10
$$

$$
x_{1}+3 x_{2} \leq 6
$$

$$
x_{1}, x_{2} \geq 0
$$

(c) Solve the following linear programming problem by using graphical method. 05
Minimise $Z=x+y$

Subject to $\quad 5 x+10 y \leq 50$
$x+y \geq 2$
$y \leq 4$
$x, y \geq 0$

OR

Q. 1
(a) Define following terms:

I Feasible solution.
II Constraints.
III Objective function.
IV Slack variable.
(b) Solve the following linear programming problem by using graphicai method.

Maximise $\quad Z=5 x+7 y$
Subject to $\quad 4 x+5 y \leq 200$ $3 x+5 y \leq 180$
$x, y \geq 0$
(c) Solve the following linear programming problem by using simplex method. 06 Maximise $\quad Z=5 X_{1}+7 X_{2}$
Subject to $\quad 4 X_{1}+5 X_{2} \leq 200$

$$
3 X_{1}+5 X_{2} \leq 180
$$

$$
2 x_{1}+3 X_{2} \leq 165
$$

$$
x_{1}, x_{2} \geq 0
$$

Q. 2
(a) What is Transportation Problem ? Also derive the mathematical formulation of Transportation Problem.
(b) Solve the following minimal assignment problem.

Man		1	2	3	4	5
	A	8	4	2	6	1
	B	0	9	5	5	4
	C	3	8	9	2	6
	D	4	3	1	0	3
	E	9	5	8	9	5

(c) Solve the following Transportation Problem Matrix Minima method.

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
O_{1}	42	48	38	37	140
O_{2}	40	49	52	51	130
O_{3}	39	38	40	43	170
Demand	80	90	110	160	

OR
Q. 2
(a) Solve the following Transportation Problem by VAM method.

	I	II	III	IV	a_{j}
A	11	13	17	14	250
B	16	18	14	10	300
C	21	24	13	10	400
b $_{j}$	200	225	275	250	

(b) Solve the following Transportation Problem by North West corner method.

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	Supply
O_{1}	4	5	7	9	10	20
O_{2}	3	1	2	6	9	30
O_{3}	8	12	15	30	4	17
O_{4}	3	2	10	13	17	13
Demand	40	8	7	19	6	80

(c) Solve the following minimal assignment problem.

Job

		1	2	3	4	5
	A	7	9	3	3	2
	B	6	1	6	6	5
Man	C	3	4	9	10	7
	D	1	5	2	2	4
	E	6	6	9	4	2

Q. 3
(a) What are the limitations of Game theory?
(b) Solve the following game using Graphical method.

Player B

		I	II	III	IV
Player A	I	2	2	3	-1
	II	4	3	2	6

(c) Solve the following game using dominance principle.

		I	II	III	IV
Player A	I	3	5	9	6
	II	5	6	7	8
	III	8	7	8	7
	IV	4	2	5	3

OR
Q. 3
(a) Explain types of Game.
(b) Solve the following game using dominance principle.

Player B

Player A

	I	II	III	IV
I	3	2	4	0
II	3	4	2	4
III	4	2	4	0
IV	0	4	0	8

(c) Solve the following game graphically whose payoff matrix for the Player A is

		Player B	
		I	II
Player A	I	2	4
	II	2	3
	III	3	2
	IV	-2	6

Q. 4
(a) Write a note on variations due to assignable causes.
(b) Draw \bar{X} and R charts for the following data and state your conclusions.

Sample No.	1	2	3	4	5	6	7	8	9	10
$\overline{\mathrm{X}}$	12.8	13.1	13.5	12.9	13.2	14.1	12.1	15.5	13.9	14.2
R	2.1	3.1	3.9	2.1	1.9	3.0	2.5	2.8	2.5	2.0

OR

Q. 4

(a) Write the difference between Variable charts and Attribute charts.
(b) The number of defects noticed in 20 clothes are given below. 05
$1,4,3,2,5,4,6,7,2,3,2,5,7,6,4,5,2,1,3,8$.
Decide whether the process is in a state of statistical control or not?
(c) Samples of 400 bottles were taken daily for 15 days from a pharmaceutical 05 company. The number of defective seals in these bottles are given below.
Draw P chart for the data.
Draw P chart for the data .

Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15														
Defective seals	28	18	40	42	32	62	50	10	30	22	80	62	76	56

