(31)

No. of printed pages: 02

SARDAR PATEL UNIVERSITY

F Y BBA (ITM) (I Sem.) Examination (NC)

Friday, 22ND April-2016 02.30 pm - 04.30 pm

UM01CBBI07 - Business Mathematics

Total Marks: 60

Note: Figures to the right indicate marks

Q.1 A. If U=set of letters of the word 'W H E A T'

[05]

A= set of letters of the word 'W H A T'

B= set of letters of the word 'II E A T'

C= set of letters of the word 'E A T'

then find (i) $(A \cap B) \times (B \cap C)$ (ii) $(A - B)' \cap C'$ (iii) $(A \cap B \cap C)'$

[05]

- (ii) Express 0.0232323..... into a quotient form.
- C. (i) If $U=\{p, q, r, s\}$, $A=\{p, q, r\}$ and $B=\{q, r, s\}$, then verify that (AUB)-B= A\cap B'.

[05]

(ii) If $A = \{-3, -2, 2, 0\}$ and $B = \{3, 2, -2, 0\}$ then find (i) $A \times B$ (ii) $A \triangle B$.

B. (i) Express the following in the form of an interval: $|x-4| \le 5$ and $x \le 0$.

OR

Q.1 A. State & verify De-Morgan's law by Venn diagram.

[05]

- **B.** State and prove De Morgan's law by taking $U=\{x/-5 \le x \le 5 ; x \in z\}$; A= $\{-1,0,1,2,5\}$, [05] B= $\{-2,0,2,3,4\}$.
- C. (i) Express the following inequalities in a modulas form: -7 < x < 8. [05]
 - (ii) If $A=\{x: -1 \le x \le 1, x \in z\}$, then find power set of A.

Q.2 A. Prove that $\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc$ [05]

- **B.** If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, then prove that $A^2 4A = 5I$ and use this to find A^{-1} . [05]
- C. Define Transpose of a matrix. Show that $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$ is an orthogonal matrix. [05]

OR

Q.2 A. If $A = \begin{bmatrix} 4 & 1 & 3 \\ 2 & 0 & 5 \\ 1 & 3 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 4 & 3 \\ 2 & 1 & 5 \end{bmatrix}$ [05]

then verify that (i) (AB)' = B'. A' (ii) (A + B)' = A' + B'.

(P.T.O)

B. Solve the following equations by Cramer's rule;

$$\begin{vmatrix} x+2 & 3 \\ y+1 & 5 \end{vmatrix} = 8$$
, $\begin{vmatrix} x-1 & y-1 \\ 1 & 6 \end{vmatrix} = 4$

C. Solve the following equations using inverse of a matrix: [05]

$$2x+y=4$$

 $5x+3y=9$.

Q.3 A. Show the equation of a line making intercepts a and b on the axes.

[04]

[05]

- B. Find the equation of a line whose slope is 2 and which passes through the point of [05] intersection of the lines x - 4y + 18 = 0 and x + y - 12 = 0.
- C. (i) Find a, if the distance between A(-3,-2) and B(a,1) is $3\sqrt{10}$.

[06]

(ii) Find the equation of a line having slope $\frac{2}{3}$ and the intercept on y-axis as 6.

- Q.3 A. Find the equation of a line which passes through the points (1,-2) & makes the intercepts on [05]the axes equal in magnitude & opposite in signs.
 - **B.** For what values of k, the lines 3x-(3k+2)y+2=0 and 2x-(k-3)y-1=0 are (i) parallel? (ii) [05]perpendicular?
 - C. (i) Show that the points (2,3), (6,5) and (12,8) are collinear. 051
 - (ii) Given A(4,5), B(2a+1, 2a-1), C (7,4) and $\overline{AB} \perp \overline{BC}$, find a.

[03]

Q.4 A. Write working rules for limit.

[12]

[11]

B. Evaluate the following:
1.
$$\lim_{x\to 2} \frac{x^3 - 3x^2 + 3x - 2}{2x^3 - 5x^2 - x + 6}$$

- $2.\lim_{n\to\infty}\left(\frac{n}{n+a}\right)^{5n+3}$
- 3. $\lim_{x \to -1} \frac{x^{-3} a^{-3}}{x^{-2} a^{-2}}$

OR

- Evaluate the following: 1. $\lim_{x\to 3} \frac{3-x}{\sqrt{3+x}-\sqrt{6}}$
 - 2. $\lim_{x\to 0} \frac{2(5)^x+3(2)^x-5}{x}$
 - $3.\lim_{n\to\infty}(\sqrt{n^2+n+1}-\sqrt{n^2+1})$
 - **B.** If $f(x) = x^2$ then find $\lim_{x\to 0} \frac{f(x+2) f(x-2)}{x}$ [04]

